Shining light on neurodegenerative pathway

University of Adelaide researchers have identified a likely molecular pathway that causes a group of untreatable neurodegenerative diseases, including Huntington's disease and Lou Gehrig's disease.

The group of about 20 diseases, which show overlapping symptoms that typically include nerve cell death, share a similar genetic mutation mechanism ? but how this form of mutation causes these diseases has remained a mystery.

"Despite the genes for some of these diseases having been identified 20 years ago, we still haven't understood the underlying mechanisms that lead to people developing clinical symptoms," says Professor Robert Richards, Head of Genetics in the University's School of Molecular and Biomedical Sciences.

"By uncovering the molecular pathway for these diseases, we now expect to be able to define targets for intervention and so come up with potential therapies. Ultimately this will help sufferers to reduce the amount of nerve or slow its progression."

In an article published in Frontiers in Molecular Neuroscience, Professor Richards and colleagues describe their innovative theory and new evidence for the key role of RNA in the development of the diseases. RNA is a large molecule in the cell that copies from the cell's DNA and translates it into the proteins that drive .

People with these diseases all have expanded numbers of copies of particular sequences of the 'nucleotide bases' which make up DNA.

"In most cases people with these diseases have increased numbers of repeat sequences in their RNA," says Professor Richards. "The disease develops when people have too many copies of the repeat sequence. Above a certain threshold, the more copies they have the earlier the disease develops and the more severe the symptoms. The current gap in knowledge is why having these expanded repeat sequences of genes in the RNA translates into actual symptoms."

Professor Richards says evidence points towards a dysfunctional RNA and a pivotal role of the body's immune system in the development of the disease.

"Rather than recognising the 'expanded repeat RNA' as its own RNA, we believe the 'expanded repeat RNA' is being seen as foreign, like the RNA in a virus, and this activates the innate immune system, resulting in loss of function and ultimately the death of the cell," he says.

The University of Adelaide laboratory modelled and defined the expanded repeat RNA disease pathway using flies (Drosophila). Other laboratories have reported tell-tale, but previously inexplicable, signs characteristic of this pathway in studies of patients with Huntington's disease and Myotonic Dystrophy.

"This new understanding, once proven in each of the relevant human diseases, opens the way for potential treatments, and should give cause for hope to those with these devastating diseases," Professor Richards says.

This research has been part-funded by the National Health and Medical Research Council of Australia and the National Ataxia Foundation of the USA.

More information: www.frontiersin.org/Molecular_… .2013.00025/abstract

Related Stories

Scientists turn muscular dystrophy defect on and off in cells

Jun 28, 2013

For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small molecules that allow for complete control over a genetic defect responsible for the most common adult onset ...

Scientists create novel RNA repair technology

Jan 18, 2012

Scientists from the Florida campus of The Scripps Research Institute have identified a compound that can help repair a specific type of defect in RNA, a type of genetic material. The methods in the new study could accelerate ...

Scientists identify ALS disease mechanism

Aug 28, 2013

Researchers have tied mutations in a gene that causes amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders to the toxic buildup of certain proteins and related molecules in cells, including neurons. The ...

Recommended for you

What happens in our brain when we unlock a door?

5 hours ago

People who are unable to button up their jacket or who find it difficult to insert a key in lock suffer from a condition known as apraxia. This means that their motor skills have been impaired – as a result ...

Sport can help multiple sclerosis patients

8 hours ago

A study developed at the Miguel Hernández University of Elche (Spain) has preliminarily concluded that people with multiple sclerosis may reduce perceived fatigue and increase mobility through a series of ...

Obama's BRAIN initiative gets more than $300 million

13 hours ago

President Barack Obama's initiative to study the brain and improve treatment of conditions like Alzheimer's and autism was given a boost Tuesday with the announcement of more than $300 million in funds.

User comments