Prion-like proteins drive several diseases of aging

Two leading neurology researchers have proposed a theory that could unify scientists' thinking about several neurodegenerative diseases and suggest therapeutic strategies to combat them.

The theory and backing for it are described in Nature.

Mathias Jucker and Lary Walker outline the emerging concept that many of the associated with aging, such as Alzheimer's and Parkinson's, are caused by specific proteins that misfold and aggregate into harmful seeds.

These seeds behave very much like the pathogenic agents known as prions, which cause , in deer, scrapie in sheep, and Creutzfeldt-Jakob disease in humans.

Walker is research professor at Yerkes National Primate Research Center, Emory University. Jucker is head of the Department of Cellular Neurology at the Hertie Institute for Clinical Brain Research at the University of Tübingen and the German Center for Neurodegenerative Diseases.

Unlike prion diseases, which can be infectious, Alzheimer's, Parkinson's, and other can not be passed from person to person under normal circumstances. Once all of these diseases take hold in the brain, however, it is increasingly apparent that the clumps of misfolded proteins spread throughout the nervous system and disrupt its function.

The authors were the first to show that a protein that is involved in Alzheimer's disease—known as amyloid-beta—forms prion-like seeds that stimulate the aggregation of other amyloid-beta molecules in and in . Since then, a growing number of laboratories worldwide have discovered that proteins linked to other neurodegenerative disorders also share key features with prions.

Age-related neurodegenerative disorders remain stubbornly resistant to the discovery of effective treatments. Jucker and Walker propose that the concept of pathogenic protein seeding not only could focus research strategies for these seemingly unrelated diseases, but it also suggests that therapeutic approaches designed to thwart prion-like seeds early in the disease process could eventually delay or even prevent the diseases.

More information: dx.doi.org/10.1038/nature12481

Related Stories

The ribosome: A new target for antiprion medicines

Jul 02, 2013

New research results from Uppsala University, Sweden, show that the key to treating neurodegenerative prion diseases such as mad cow disease and Creutzfeldt-Jakob disease may lie in the ribosome, the protein synthesis machinery ...

New models advance the study of deadly human prion diseases

Aug 19, 2013

By directly manipulating a portion of the prion protein-coding gene, Whitehead Institute researchers have created mouse models of two neurodegenerative diseases that are fatal in humans. The highly accurate reproduction of ...

Recommended for you

Diet affects men's and women's gut microbes differently

3 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

4 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

7 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments