Schizophrenia: It's in the wiring of the brain

September 16, 2013

Just as wires must be insulated to effectively carry electrical impulses, nerve cells must be insulated by myelin to effectively transmit neural impulses. Using typical magnetic resonance imaging or MRI, one can visually distinguish parts of the brain that look white and parts that look gray. Myelin is most prevalent in the white matter because this component of the brain tissue is principally comprised by the nerve cell projections (axons) that are covered by myelin and that transmit information from one part of the brain to another.

In a new paper in Biological Psychiatry, Fei Du and colleagues at Harvard Medical School combined two types of brain imaging to characterize abnormalities in the white matter in schizophrenia.

One type of imaging, called , measures the levels of particular chemicals in the brain. Another approach, called magnetization transfer imaging, is sensitive to changes in the level of myelin in the white matter.

"The notion that the brain in schizophrenia is characterized by abnormalities in connections between distant brain regions is not new, and imaging studies using have long suggested that the white matter where these connections travel is abnormal in this condition," explained senior author Dr. Dost Öngür. "However, we have not had the tools to determine whether the abnormalities are in axons, or the around the axons, or both."

The researchers found evidence for abnormalities in both myelin and axons among patients with schizophrenia, when compared with healthy individuals who underwent the same testing. More specifically, they found reduced myelination of white matter pathways in schizophrenia, and also abnormal diffusion of N-acetylaspartate, a metabolite thought to be predominately localized within .

This pattern of results is indicative of abnormalities in information processing and cognitive deficits, which is consistent with what scientists already know about how the brain is impacted by schizophrenia and the symptoms associated with this disorder.

"This study provides new evidence that myelination abnormalities in schizophrenia are associated with disturbances in the functional integrity of the white matter. As the white matter carries long range communication in the brain, the current findings raise new questions about the functional impact and treatment for these neural deficits," said Dr. John Krystal, Editor of Biological Psychiatry.

These findings are important because they suggest that "the white matter abnormalities in schizophrenia are complex and interconnected", added Öngür. "A strategy to impact both axonal health and myelin synthesis may be needed to restore normal white matter functioning in this condition."

Such a strategy to restore abnormal functioning is not likely in the near future, but advances provided by this study and others like it help bring scientists ever closer to that ultimate goal.

Explore further: White matter, old dogs, and new tricks

More information: Du, F. et al. Myelin and Axon Abnormalities in Schizophrenia Measured with Magnetic Resonance Imaging Techniques, Biological Psychiatry, Volume 74, Issue 6, September 15, 2013. DOI: 10.1016/j.biopsych.2013.03.003

Related Stories

White matter, old dogs, and new tricks

September 24, 2012

Most people equate "gray matter" with the brain and its higher functions, such as sensation and perception, but this is only one part of the anatomical puzzle inside our heads. Another cerebral component is the white matter, ...

Recommended for you

Action recognition without mirror neurons

April 29, 2016

When someone stands opposite us and purposefully raises their arm to make some kind of movement, our brain asks itself whether they intend to attack us or, perhaps, simply greet us. Scientists from the Department of Human ...

Subtle chemical changes in brain can alter sleep-wake cycle

April 28, 2016

A study out today in the journal Science sheds new light on the biological mechanisms that control the sleep-wake cycle. Specifically, it shows that a simple shift in the balance of chemicals found in the fluid that bathes ...

Turn left! How myosin-Va helps direct neuron growth

April 28, 2016

Researchers at the RIKEN Brain Science Institute in Japan have discovered a protein complex that helps direct the growth of axons—the parts of neurons that make up our nerves, connecting our senses and muscles to the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.