Scientists identify key regulator controlling formation of blood-forming stem cells

September 26, 2013

Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in Cell.

The work was reported by Dr. Gordon Keller, Director of the McEwen Centre for Regenerative Medicine, and Senior Scientist at Princess Margaret Cancer Centre, both at University Health Network. Dr. Keller is also Professor in the Department of Medical Biophysics at the University of Toronto and holds a Canada Research Chair in .

Using mouse models to study the process of blood cell development, Dr. Keller and his team demonstrated that the retinoic acid signalling pathway is required for formation of blood-forming stem cells. Retinoic acid is produced from vitamin A and is essential for many areas of human growth and development.

When the researchers genetically disrupted the pathway that produces in mice, no blood-forming stem cells were produced. When they activated the pathway at the precise stage when stem cells develop, they observed a large increase in the number of blood-forming stem cells.

"Understanding how different cells and tissues are made in the embryo provides important clues for producing human cell types from in a Petri dish," says Dr. Keller. Pluripotent stem cells are master stem cells that are able to generate many different cell types including heart, blood, and liver. To make a specific cell type from pluripotent stem cells, one must direct them down the appropriate developmental path in the Petri dish.

Dr. Keller adds: "Our findings have identified a critical regulator for directing pluripotent stem cells to make blood-forming stem cells, bringing us one step closer to our goal of developing a new and unlimited source of these stem cells for transplantation for the treatment of different blood cell diseases."

Explore further: Researchers succeed in programming blood forming stem cells

Related Stories

Researchers succeed in programming blood forming stem cells

June 13, 2013

By transferring four genes into mouse fibroblast cells, researchers at the Icahn School of Medicine at Mount Sinai have produced cells that resemble hematopoietic stem cells, which produce millions of new blood cells in the ...

Tracking nanodiamond-tagged stem cells

August 5, 2013

A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Pancreatic stem cells isolated from mice

September 17, 2013

Scientists have succeeded in growing stem cells that have the ability to develop into two different types of cells that make up a healthy pancreas. The research team led by Dr. Hans Clevers of the Hubrecht Institute, The ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.