Scientists discover a novel opiate addiction switch in the brain

Neuroscientists at Western University (London, Canada) have made a remarkable new discovery revealing the underlying molecular process by which opiate addiction develops in the brain. Opiate addiction is largely controlled by the formation of powerful reward memories that link the pleasurable effects of opiate-class drugs to environmental triggers that induce drug craving in individuals addicted to opiates. The research is published in the September 11th issue of The Journal of Neuroscience.

The Addiction Research Group led by Steven Laviolette of the Schulich School of Medicine & Dentistry was able to identify how exposure to heroin induces a specific switch in a memory molecule in a region of the brain called the basolateral amygdala, which is involved importantly in controlling memories related to opiate addiction, withdrawal, and relapse. Using a rodent model of opiate addiction, Laviolette's team found that the process of opiate addiction and withdrawal triggered a switch between two molecular pathways in the amygdala controlling how opiate addiction memories were formed. In the non-dependent state, they found that a molecule called extracellular signal-related kinase or "ERK" was recruited for early stage addiction memories. However, once opiate addiction had developed, the scientists observed a functional switch to a separate molecular memory pathway, controlled by a molecule called calmodulin-dependent kinase II or "CaMKII".

"These findings will shed important new light on how the brain is altered by opiate drugs and provide exciting new targets for the development of novel pharmacotherapeutic treatments for individuals suffering from chronic opiate addiction," says Laviolette, an associate professor in the Departments of Anatomy & Cell Biology, Psychiatry, and Psychology.

More information: The paper is titled "Opiate Exposure and Withdrawal Induces a Molecular Memory Switch in the Basolateral Amygdala Between ERK1/2 and CaMKII-Dependent Signaling Substrates."

Related Stories

Radical solution to ‘clip’ addiction

Aug 08, 2011

Accidentally leaving a stainless-steel spatula in an overnight experiment has led to the discovery of a more efficient and environmentally friendly method of producing anti-addiction medications.

New insight into how brain 'learns' cocaine addiction

Aug 01, 2013

A team of researchers says it has solved the longstanding puzzle of why a key protein linked to learning is also needed to become addicted to cocaine. Results of the study, published in the Aug. 1 issue of the journal Cell, descri ...

Heroin availability increasing across Washington state

Jun 12, 2013

New data from the University of Washington's Alcohol and Drug Abuse Institute indicates increases in heroin availability, abuse and deaths across the state, particularly among young adults ages 18-29. These increases are ...

Early warning of newborn withdrawal

Jul 02, 2013

In substance-exposed newborns, identification of the gene variations associated with risk of opioid addiction could aid the treatment of their withdrawal symptoms in the critical hours after birth, according ...

Recommended for you

Why your favourite song takes you down memory lane

23 hours ago

Music triggers different functions of the brain, which helps explain why listening to a song you like might be enjoyable but a favourite song may plunge you into nostalgia, scientists said on Thursday.

Transcranial Magnetic Stimulation of brain boosts memory

Aug 28, 2014

Stimulating a particular region in the brain via non-invasive delivery of electrical current using magnetic pulses, called Transcranial Magnetic Stimulation, improves memory, reports a new Northwestern Medicine ...

User comments