Shout now! How nerve cells initiate voluntary calls

September 6, 2013

"Should I say something or not?" Human beings are not alone in pondering this dilemma – animals also face decisions when they communicate by voice. University of Tübingen neurobiologists Dr. Steffen Hage and Professor Andreas Nieder have now demonstrated that nerve cells in the brain signal the targeted initiation of calls – forming the basis of voluntary vocal expression. Their results are published in Nature Communications.

When we speak, we use the sounds we make for a specific purpose – we intentionally say what we think, or consciously withhold information. Animals, however, usually make sounds according to what they feel at that moment. Even our closest relations among the primates make sounds as a reflex based on their mood. Now, Tübingen neuroscientists have shown that are able to call (or be silent) on command. They can instrumentalize the sounds they make in a targeted way, an important behavioral ability which we also use to put language to a purpose.

To find out how the in the brain catalyse the production of controled vocal noises, the researchers taught rhesus monkeys to call out quickly when a spot appeared on a computer screen. While the monkeys solved puzzles, measurements taken in their revealed astonishing reactions in the cells there. The became active whenever the monkey saw the spot of light which was the instruction to call out. But if the monkey simply called out spontaneously, these nerve cells were not activated. The cells therefore did not signaled for just any vocalisation – only for calls that the monkey actively decided to make.

The results published in Nature Communications provide valuable insights into the neurobiological foundations of . "We want to understand the in the brain which lead to the voluntary production of calls," says Dr. Steffen Hage of the Institute for Neurobiology, "because it played a key role in the evolution of human ability to use speech." The study offers important indicators of the function of part of the brain which in humans has developed into one of the central locations for controlling speech. "Disorders in this part of the human brain lead to severe speech disorders or even complete loss of speech in the patient," Professor Andreas Nieder explains. The results – giving insights into how the production of sound is initiated – may help us better understand speech disorders.

Explore further: The great orchestral work of speech

More information: Steffen, R., Nieder, H., and Nieder, A. Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations, Nature Communications. DOI: 10.1038/ncomms3409, 2013doi:10.1038/ncomms3409, 2013

Related Stories

The great orchestral work of speech

February 26, 2013

What goes on inside our heads is similar to an orchestra. For Peter Hagoort, Director at the Max Planck Institute for Psycholinguistics, this image is a very apt one for explaining how speech arises in the human brain. "There ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.