Study aims to understand how, when the auditory system registers complex auditory-visual synchrony

October 23, 2013

Imagine the brain's delight when experiencing the sounds of Beethoven's "Moonlight Sonata" while simultaneously taking in a light show produced by a visualizer.

A new Northwestern University study did much more than that.

To understand how the responds to highly complex auditory-visual stimuli like music and moving images, the study tracked parts of the auditory system involved in the perceptual processing of "Moonlight Sonata" while it was synchronized with the light show made by the iTunes Jelly visualizer.

The study shows how and when the encodes auditory-visual synchrony between complex and changing sounds and images.

Much of related research looks at how the brain processes simple sounds and images. Locating a woodpecker in a tree, for example, is made easier when your brain combines the auditory (pecking) and visual (movement of the bird) streams and judges that they are synchronous. If they are, the brain decides that the two sensory inputs probably came from a single source.

While that research is important, Julia Mossbridge, lead author of the study and research associate in psychology at Northwestern, said it also is critical to expand investigations to highly complex stimuli like music and movies.

"These kinds of things are closer to what the brain actually has to manage to process in every moment of the day," she said. "Further, it's important to determine how and when sensory systems choose to combine stimuli across their boundaries.

"If someone's brain is mis-wired, sensory information could combine when it's not appropriate," she said. "For example, when that person is listening to a teacher talk while looking out a window at kids playing, and the auditory and visual streams are integrated instead of separated, this could result in confusion and misunderstanding about which go with what experience."

It was already known that the left auditory cortex is specialized to process sounds with precise, complex and rapid timing; this gift for auditory timing may be one reason that in most people, the left auditory cortex is used to process speech, for which timing is critical. The results of this study show that this specialization for timing applies not just to sounds, but to the timing of complex and dynamic sounds and images.

Previous research indicates that there are multi-sensory areas in the brain that link sounds and images when they change in similar ways, but much of this research is focused particularly on speech signals (e.g., lips moving as vowels and consonants are heard). Consequently, it hasn't been clear what areas of the brain process more general auditory-visual synchrony or how this processing differs when sounds and images should not be combined.

"It appears that the brain is exploiting the left 's gift at processing auditory timing, and is using similar mechanisms to encode auditory-visual synchrony, but only in certain situations; seemingly only when combining the sounds and images is appropriate," Mossbridge said.

Explore further: Unraveling the mysteries of the maternal brain: Odors influence the response to sounds

More information: The article "Seeing the song: Left auditory structures may track auditory-visual dynamic alignment" will appear Oct. 23 in PLOS ONE: dx.plos.org/10.1371/journal.pone.0077201

Related Stories

Multisensory integration: When correlation implies causation

December 15, 2011

In order to get a better picture of our surroundings, the brain has to integrate information from different senses, but how does it know which signals to combine? New research involving scientists from the Max Planck Institute ...

Getting an expected award music to the brain's ears

September 25, 2013

Several studies have shown that expecting a reward or punishment can affect brain activity in areas responsible for processing different senses, including sight or touch. For example, research shows that these brain regions ...

Recommended for you

Amputees' brains remember missing hands even years later

August 30, 2016

Our brains have a detailed picture of our hands and fingers, and that persists even decades after an amputation, Oxford University researchers have found. The finding could have implications for the control of next generation ...

Brain's internal compass also navigates during imagination

August 30, 2016

When you try to find your way in a new place, your brain creates a spatial map that represents that environment. Neuroscientists from Radboud University's Donders Institute now show that the brain's 'navigation system' is ...

Special nerve cells cause goose bumps and nipple erection

August 29, 2016

The sympathetic nerve system has long been thought to respond the same regardless of the physical or emotional stimulus triggering it. However, in a new study from Karolinska Institutet published in the Nature Neuroscience, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.