Researchers make exciting discoveries in non-excitable cells

October 17, 2013 by Bill Hathaway

It has been 60 years since scientists discovered that sodium channels create the electrical impulses crucial to the function of nerve, brain, and heart cells—all of which are termed "excitable." Now researchers at Yale and elsewhere are discovering that sodium channels also play key roles in so-called non-excitable cells.

In the Oct. 16 issue of the journal Neuron, Yale neuroscientists Stephen Waxman and Joel Black review nearly a quarter-century of research that shows sodium channels in cells that do not transmit may nonetheless play a role in immune system function, migration of cells, neurodegenerative disease, and cancer.

"This insight has opened up new avenues of research in a variety of pathologies," Waxman said.

For instance, Waxman's lab has begun to study the functional role of voltage-gated sodium channels in non-excitable glial cells within the spinal cord and brain. They are currently investigating whether in these non-excitable cells may participate in the formation of glial scars, thereby inhibiting regeneration of nerve after traumatic injury to the spinal cord or brain.

More information: www.cell.com/neuron/abstract/S0896-6273(13)00810-6

Related Stories

Recommended for you

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.