Researchers make exciting discoveries in non-excitable cells

by Bill Hathaway

It has been 60 years since scientists discovered that sodium channels create the electrical impulses crucial to the function of nerve, brain, and heart cells—all of which are termed "excitable." Now researchers at Yale and elsewhere are discovering that sodium channels also play key roles in so-called non-excitable cells.

In the Oct. 16 issue of the journal Neuron, Yale neuroscientists Stephen Waxman and Joel Black review nearly a quarter-century of research that shows sodium channels in cells that do not transmit may nonetheless play a role in immune system function, migration of cells, neurodegenerative disease, and cancer.

"This insight has opened up new avenues of research in a variety of pathologies," Waxman said.

For instance, Waxman's lab has begun to study the functional role of voltage-gated sodium channels in non-excitable glial cells within the spinal cord and brain. They are currently investigating whether in these non-excitable cells may participate in the formation of glial scars, thereby inhibiting regeneration of nerve after traumatic injury to the spinal cord or brain.

More information: www.cell.com/neuron/abstract/S0896-6273(13)00810-6

add to favorites email to friend print save as pdf

Related Stories

Scorpion venom -- bad for bugs, good for pesticides

Apr 27, 2011

Fables have long cast scorpions as bad-natured killers of hapless turtles that naively agree to ferry them across rivers. Michigan State University scientists, however, see them in a different light.

Recommended for you

Researchers unlock mystery of skin's sensory abilities

Dec 19, 2014

Humans' ability to detect the direction of movement of stimuli in their sensory world is critical to survival. Much of this stimuli detection comes from sight and sound, but little is known about how the ...

Tackling neurotransmission precision

Dec 18, 2014

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.