New discovery in quest for better drugs

October 14, 2013
New discovery in quest for better drugs
New research has paved the way for drugs that are more effective and have fewer side effects.

Scientists have combined cutting edge computer modelling with pharmacology and medicinal chemistry to reveal new insights into how the body interacts with novel drug treatments, in research that could lead to the creation of drugs that are more targeted and with fewer side effects.

In a paper published today in Nature, researchers from the Monash Institute of Pharmaceutical Sciences (MIPS) were part of an international team who investigated alternative recognition sites on G protein-coupled receptors (GPCRs) - the largest and most important family of in the human body.

GPCRs play a role in virtually every biological process and most diseases, including neuropsychiatric disorders, cardiovascular disease, obesity and diabetes, inflammation and cancer. Almost half of all current medications available use GPCRs to achieve their therapeutic effect.

The new research into how GPCRs work at the has unlocked vital insights into how drugs interact with this therapeutically relevant receptor family.

Professor Arthur Christopoulos from MIPS said it was hoped the research would lead to the creation of drugs that are more targeted, and with fewer .

"This study has cracked the secret of how a new class of drug molecule, which we have been studying for some time now, actually binds to a GPCR and changes the protein's structure to achieve its unique molecular effect," Professor Christopoulos said.

"This research can explain the behaviour of such drugs at the molecular level and facilitate structure-based design for new and more potent drugs."

By starting with a known crystal structure of a GPCR as a template, the team used computer simulations to map how different drugs and the receptor can "find" each other, and how they change their shape and orientation as they interact. Importantly, the predictions made by the computer simulations were validated by new biological experiments and by the rational design of a more potent molecule that targets the GPCR.

Explore further: Team finds dissimilar proteins evolved similar 7-part shape

More information: www.nature.com/nature/journal/vaop/ncurrent/full/nature12595.html

Related Stories

Team finds dissimilar proteins evolved similar 7-part shape

May 1, 2013

Solving the structure of a critical human molecule involved in cancer, scientists at The Scripps Research Institute (TSRI) have found what they call a good example of structural conservation—dissimilar genes that keep very ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.