Better understanding of the HIV epidemic through an evolutionary perspective

With the abundance of sequencing data, scientists can use ever more powerful evolutionary biology tools to pinpoint the transmission and death rates for epidemics such as HIV, which has remained elusive to a cure. Reconstructed evolutionary trees, called phylogenies, can trace a family of viral mutations over time. When combined with epidemiology, tree construction can allow for great insight into the dynamics of disease transmission and how a pathogen eludes its host to spread infection.

Professor Gabriel Leventhal, et. al., from the ETH Zurich in Switzerland report on a new method that successfully combines evolutionary tree studies and epidemiology, using viral sequence data from 10 clusters of the Swiss HIV Cohort Study. For some clusters, the HIV epidemic appeared saturated, with very few new cases appearing while in others, new infections were still common. Overall, HIV transmission was characterized by initial rapid spread within subpopulations that slows down to only a small number of infections.

"Using a novel methodology, we were able to estimate the the number of individuals that are at risk of becoming infected within transmission clusters of the Swiss HIV epidemic and found that many of these clusters are characterized by initial rapid infection of most at risk individuals within a cluster, followed by a slowdown of new infections within each cluster," said Leventhal.

This allowed the team, for the first time, to estimate not only HIV transmission and , but also the total susceptible population size within certain transmission groups from viral sequence data. Their model can successfully predict how the number of infected and susceptible individuals will vary over time, giving new insight and predictions into how an ongoing epidemic will continue to develop and help guide future public health intervention strategies.

add to favorites email to friend print save as pdf

Related Stories

New target to fight HIV infection identified

Oct 01, 2013

A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

The first animal model for sexual transmission of HIV

Aug 15, 2013

Infection by human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), a debilitating disorder in which progressive weakening of the immune system makes affected individuals more susceptible to ...

New book on HIV from Cold Spring Harbor Laboratory Press

Dec 15, 2011

The worldwide AIDS epidemic makes research on HIV, the disease processes it induces, and potential HIV therapies among the most critical in biomedical science. Furthermore, the basic biology of HIV infections ...

Recommended for you

New study reveals why some people may be immune to HIV-1

Nov 20, 2014

Doctors have long been mystified as to why HIV-1 rapidly sickens some individuals, while in others the virus has difficulties gaining a foothold. Now, a study of genetic variation in HIV-1 and in the cells ...

Virus discovery could impact HIV drug research

Nov 20, 2014

A research team led by Portland State University (PSU) biology professor Ken Stedman has unlocked the structure of an unusual virus that lives in volcanic hot springs. The discovery could pave the way for better drugs to ...

UN warns over threat of AIDS rebound

Nov 19, 2014

South African actress Charlize Theron threw her weight Tuesday behind an urgent new UN campaign to end AIDS as a global health threat by 2030.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.