Towards a better understanding of inherited hearing loss

A team of researchers led by Dr. Michel Cayouette at the IRCM made an important discovery, published online yesterday by the scientific journal Developmental Cell, that could better explain some inherited forms of hearing loss in humans. The Montréal scientists identified a group of proteins crucial for shaping the cellular organ responsible for detecting sounds.

For a human to hear, sound-induced vibrations in the inner ear must first be transformed into electrical impulses before they can be relayed to the brain. This transformation is performed by "" (or sensory cells) located in the . On the surface of these cells, microscopic hair-like protrusions known as stereocilia act as specialized sensors to detect vibrations.

"During embryonic development, these stereocilia develop into a characteristic V-shaped brush," says Dr. Cayouette, Director of the Cellular Neurobiology research unit at the IRCM. "In addition, all cells orient their brush with the V pointing in the same direction. This polarized organization is critical for sensory function, but remains poorly understood."

"We studied a group of proteins known to control cell division in the organism and discovered a new role they play in the auditory system," explains Dr. Basile Tarchini, postdoctoral fellow in Dr. Cayouette's laboratory and first author of the study. "We showed that these proteins occupy a specific region at the to define the exact placement of stereocilia and enable the creation of the V-shaped brush."

"Furthermore, we discovered that one of the proteins is also required for coordinating the orientation of the brushes among neighbouring cells, thereby ensuring that the V formed by each brush points in the same direction," adds Dr. Tarchini. "Our results strongly suggest, for the first time, that this group of proteins could be the link between two important molecular mechanisms: the system responsible for the placement of stereocilia into a V-shaped brush at the cell surface, and the system that orients this V-shaped structure in the surrounding tissue."

"Recent studies show that mutations in one of the proteins we studied are associated with inherited forms of in humans," concludes Dr. Cayouette. "By defining a function for this class of proteins in hair , our work helps explain the mechanisms that could cause these conditions."

More information: www.cell.com/developmental-cel… 1534-5807(13)00537-6

add to favorites email to friend print save as pdf

Related Stories

Hearing loss clue uncovered

Jun 11, 2013

(Medical Xpress)—Researchers from the Department of Otolaryngology at the University of Melbourne and the Department of Biochemistry and Molecular Biology at Monash University have discovered how hearing loss in humans ...

Cellular channels vital for hearing identified

Jul 18, 2013

Ending a 30-year search by scientists, researchers at Boston Children's Hospital have identified two proteins in the inner ear that are critical for hearing, which, when damaged by genetic mutations, cause a form of delayed, ...

Recommended for you

The impact of bacteria in our guts

20 minutes ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

41 minutes ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

1 hour ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

20 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments