Molecule produced during exercise boosts brain health

October 10, 2013

A protein that is increased by endurance exercise has been isolated and given to non-exercising mice, in which it turned on genes that promote brain health and encourage the growth of new nerves involved in learning and memory, report scientists from Dana-Farber Cancer Institute and Harvard Medical School.

The findings, reported in the journal Cell Metabolism, help explain the well-known capacity of endurance exercise to improve cognitive function, particularly in older people. If the protein can be made in a stable form and developed into a drug, it might lead to improved therapies for cognitive decline in older people and slow the toll of neurodegenerative diseases such Alzheimer's and Parkinson's, according to the investigators.

"What is exciting is that a natural substance can be given in the bloodstream that can mimic some of the effects of endurance exercise on the brain," said Bruce Spiegelman, PhD, of Dana-Farber and HMS. He is co-senior author of the publication with Michael E. Greenberg, PhD, chair of neurobiology at HMS.

The Spiegelman group previously reported that the protein, called FNDC5, is produced by muscular exertion and is released into the bloodstream as a variant called irisin. In the new research, endurance exercise – mice voluntarily running on a wheel for 30 days – increased the activity of a metabolic regulatory molecule, PGC-1α, in muscles, which spurred a rise in FNDC5 protein. The increase of FNDC5 in turn boosted the expression of a brain-health protein, BDNF (brain-derived neurotrophic protein) in the dentate gyrus of the hippocampus, a part of the brain involved in learning and memory.

It has been found that exercise stimulates BDNF in the hippocampus, one of only two areas of the adult brain that can generate new nerve cells. BDNF promotes development of new nerves and synapses – connections between nerves that allow learning and memory to be stored – and helps preserve the survival of brain cells.

How exercise raises BDNF activity in the brain wasn't known; the new findings linking exercise, PGC-1α, FNDC5 and BDNF provide a molecular pathway for the effect, although Spiegelman and his colleagues suggest there are probably others.

Having shown that FNDC5 is a molecular link between exercise and increased BDNF in the brain, the scientists asked whether artificially increasing FNDC5 in the absence of exercise would have the same effect. They used a harmless virus to deliver the protein to mice through the bloodstream, in hopes the FNDC5 could reach the brain and raise BDNF activity. Seven days later, they examined the mouse brains and observed a significant increase in BDNF in the hippocampus.

"Perhaps the most exciting result overall is that peripheral deliver of FNDC5 with adenoviral vectors is sufficient to induce central expression of Bdnf and other genes with potential neuroprotective functions or those involved in learning and memory," the authors said. Spiegelman cautioned that further research is needed to determine whether giving FNDC5 actually improves cognitive function in the animals. The scientists also aren't sure whether the protein that got into the brain is FNDC5 itself, or irisin, or perhaps another variant of the protein.

Spiegelman said that development of irisin as a drug will require creating a more stable form of the protein.

More information: Cell Metabolism, Wrann et al.: "Exercise induces hippocampal BDNF through a PGC-1/FNDC5 pathway." dx.doi.org/10.1016/j.cmet.2013.09.008

Related Stories

Scientists isolate protein linking exercise to health benefits

January 11, 2012

A team led by researchers at Dana-Farber Cancer Institute has isolated a natural hormone from muscle cells that triggers some of the key health benefits of exercise. They say the protein, which serves as a chemical messenger, ...

Making memories: How one protein does it

March 5, 2012

Studying tiny bits of genetic material that control protein formation in the brain, Johns Hopkins scientists say they have new clues to how memories are made and how drugs might someday be used to stop disruptions in the ...

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.