Identifying a mystery channel crucial for hearing

A study in The Journal of General Physiology provides new evidence about the molecular makeup of the hair cell transduction channel, which plays a critical role in our ability to hear (magnified region of a hair cell shown here). Credit: Kim et al., 2013

Our ability to hear relies on hair cells, sensory receptors that mechanically amplify low-level sound that enters the inner ear through a transduction channel. Although the transduction channel was characterized more than 30 years ago, researchers have been unable to identify its molecular components. A new study in The Journal of General Physiology could help lead to a definitive identification of this mystery channel.

Recent studies have suggested that members of the TMC family of membrane proteins are strong candidates as the components of the hair cell's transduction channel. Now, a team led by scientists from the University of Wisconsin Medical School provides evidence that the TMCs instead couple the transduction channel to tip links—the mechanical elements that provide directional sensitivity to —and are not the channel itself. This suggests that the transduction channel may be a membrane protein distinct from TMCs that only functions properly once other key molecules are expressed.

Whether or not TMCs turn out to be the transduction channel, the new results affirm that they play a central role in hair cell mechanotransduction. The work adds to evolving research aimed at understanding the cellular and molecular mechanisms that affect hearing.

More information: Barr-Gillespie, P.G., and T. Nicolson. 2013. J. Gen. Physiol DOI: 10.1085/jgp.201311111 Kim, K.X., et al. 2013. J. Gen. Physiol. DOI: 10.1085/jgp.201311068

add to favorites email to friend print save as pdf

Related Stories

Cellular channels vital for hearing identified

Jul 18, 2013

Ending a 30-year search by scientists, researchers at Boston Children's Hospital have identified two proteins in the inner ear that are critical for hearing, which, when damaged by genetic mutations, cause a form of delayed, ...

Scientists find new pieces of hearing puzzle

May 08, 2012

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have gained important new insights into how our sense of hearing works. Their findings promise new avenues for scientists to understand ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.