Neurological researchers find fat may be linked to memory loss

October 9, 2013

Although problems with memory become increasingly common as people age, in some persons, memories last long time, even a life time. On the other hand, some people experience milder to substantial memory problems even at an earlier age.

Although there are several risk factors of dementia, abnormal fat metabolism has been known to pose a risk for memory and learning. People with high amounts of in their middle age are 3.6 times as likely to develop and dementia later in their life.

Neurological scientists at the Rush University Medical Center in collaboration with the National Institutes of Health have discovered that the same protein that controls fat metabolism in the liver resides in the memory center of the (hippocampus) and controls memory and learning.

Results from the study funded by the Alzheimer's Association and the National Institutes of Health were recently published in Cell Reports.

"We need to better understand how fat is connected to memory and learning so that we can develop effective approach to protect memory and learning," said Kalipada Pahan, PhD, the Floyd A. Davis professor of neurology at Rush University Medical Center.

The liver is the body's major fat metabolizing organ. Peroxisome proliferator-activated receptor alpha (PPARalpha) is known to control fat metabolism in the liver. Accordingly, PPARalpha is highly expressed in the liver.

"We are surprised to find high level of PPARalpha in the hippocampus of animal models," said Pahan.

"While PPARalpha deficient mice are poor in learning and memory, injection of PPAR? to the hippocampus of PPARalpha deficient mice improves learning and memory", said Pahan.

Since PPARalpha directly controls , people with abdominal fat levels have depleted PPARalpha in the liver and abnormal lipid metabolism. At first, these individuals lose PPARalpha from the liver and then eventually from the whole body including the brain. Therefore, abdominal fat is an early indication of some kind of dementia later in life, according to Pahan.

By bone marrow chimera technique, researchers were able to create some mice having normal PPARalpha in the liver and depleted PPARalpha in the brain. These mice were poor in memory and learning. On the other hand, mice that have normal PPARalpha in the brain and depleted PPARalpha in the showed normal memory.

"Our study indicates that people may suffer from memory-related problems only when they lose PPARalpha in the ", said Pahan.

CREB (cyclic AMP response element-binding protein) is called the master regulator of memory as it controls different memory-related proteins. "Our study shows that PPARalpha directly stimulates CREB and thereby increases memory-related proteins", said Pahan.

"Further research must be conducted to see how we could potentially maintain normal PPARalpha in the brain in order to be resistant to memory loss", said Pahan.

Other Rush researchers involved in this study include Avik Roy, PhD, research assistant professor; Malabendu Jana, PhD assistant professor; Grant Corbett, neuroscience graduate student; Shilpa Ramaswamy, instructor; and Jeffrey H. Kordower, PhD, the Jean Schweppe Armour professor of neurological sciences.

Alzheimer's disease is the most common human disorder associated with memory loss. This disease slowly destroys and thinking skills, and eventually even the ability to carry out the simplest tasks. Nationwide, the total payments for services for people with Alzheimer's and other forms of dementia will total $203 billion in 2013. By 2050, the total costs are expected to increase 500 percent to a staggering $1.2 trillion.

Explore further: Scientists identify Buphenyl as a possible drug for Alzheimer's disease

Related Stories

Adolescents' high-fat diet impairs memory and learning

June 17, 2013

A high-fat diet in adolescence appears to have long-lasting effects on learning and memory during adulthood, a new study in mice finds. The results were presented Saturday at The Endocrine Society's 95th Annual Meeting in ...

Long-term memory in the cortex

August 27, 2013

(Medical Xpress)—'Where' and 'how' memories are encoded in a nervous system is one of the most challenging questions in biological research. The formation and recall of associative memories is essential for an independent ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.