Neuron 'claws' in the brain enable flies to distinguish one scent from another

October 20, 2013
Kenyon cell claws (indicated with boxes) extend from a single cell body in the fruit fly brain. CSHL researchers have found that each claw responds to different chemical compounds, and multiple claws must be stimulated in order for the Kenyon cell to become active. In this way, the Kenyon cells are the integration point that allows the fly to "remember" a smell. Credit: Turner Lab, Cold Spring Harbor Laboratory

Think of the smell of an orange, a lemon, and a grapefruit. Each has strong acidic notes mixed with sweetness. And yet each fresh, bright scent is distinguishable from its relatives. These fruits smell similar because they share many chemical compounds. How, then does the brain tell them apart? How does the brain remember a complex and often overlapping chemical signature as a particular scent?

Researchers at Cold Spring Harbor Laboratory (CSHL) are using the fruit fly to discover how the integrates multiple signals to identify one unique smell. It's work that has broader implication for how flies – and ultimately, people – learn. In work published today in Nature Neuroscience, a team led by Associate Professor Glenn Turner describes how a group of neurons in the fruit fly brain recognize multiple individual chemicals in combination in order to define, or remember, a single scent.

The olfactory system of a fruit fly begins at the equivalent of our nose, where a series of neurons sense and respond to very specific chemicals. These neurons pass their signal on to a group of cells called projection neurons. Then the signal undergoes a transformation as it is passed to a body of neurons in the fly brain called Kenyon cells.

Kenyon cells have multiple, extremely long protrusions that grasp the projection neurons with a claw-like structure. Each Kenyon cell claw is wrapped tightly around only one projection neuron, meaning that it receives a signal from just one type of input. In addition to their unique structure, Kenyon cells are also remarkable for their selectivity. Because they're selective, they aren't often activated. Yet little is known about what in fact makes them decide to fire a signal.

Turner and colleague Eyal Gruntman, who is lead author on their new paper, used cutting-edge microscopy to explore the chemical response profile for multiple claws on one Kenyon cell. They found that each claw, even on a single Kenyon cell, responded to different chemicals. Additional experiments using light to stimulate individual (a technique called optogenetics) revealed that single Kenyon cells were only activated when several of their claws were simultaneously stimulated, explaining why they so rarely fire. Taken together, this work explains how individual Kenyon cells can integrate multiple signals in the brain to "remember" the particular chemical mixture as a single, distinct odor .

Turner will next try to determine "what controls which claws are connected," which will provide insight into how the brain learns to assign a specific mix of chemicals as defining a particular scent. But beyond simple odor detection, the research has more general implications for learning. For Turner, the question driving his work forward is: what in the brain changes when you learn something?

More information: "Integration of the olfactory code across dendritic claws of single mushroom body neurons" appears online ahead of print in Nature Neuroscience on October 20, 2013. DOI: 10.1038/NN.3547

Related Stories

Recommended for you

Take a trip through the brain (w/ Video)

July 30, 2015

A new imaging tool developed by Boston scientists could do for the brain what the telescope did for space exploration. In the first demonstration of how the technology works, published July 30 in the journal Cell, the researchers ...

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.