Glowing neurons reveal networked link between brain, whiskers

October 16, 2013
Cover art for a Cell Reports paper depicting networks of sensory neurons that connect a mouse's whiskers with its brain. Credit: Katsuyasu Sakurai, Duke University

Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a "labeled-lines" structure.

But new research on mouse whiskers from Duke University reveals a surprise—at the fine scale, the sensory system's wiring diagram doesn't have a set pattern. And it's probably the case that no two people's touch sensory systems are wired exactly the same at the detailed level, according to Fan Wang, Ph.D., an associate professor of neurobiology in the Duke Medical School.

The results, which appear online in Cell Reports, highlight a "one-to-many, many-to-one" nerve connectivity strategy. Single neurons send signals to multiple potential secondary neurons, just as signals from many neurons can converge onto a secondary neuron. Many such connections are likely formed by chance, Wang said. This connectivity scheme allows the touch system to have many possible combinations to encode a large repertoire of textures and forms.

"We take our sense of touch for granted," Wang said. "When you speak, you are not aware of the constant tactile feedback from your tongue and teeth. Without such feedback, you won't be able to say the words correctly. When you write with a pen, you're mostly unaware of the sensors telling you how to move it."

It's not feasible to visualize the touch pathways in the human brain at high resolutions. So, Wang and her collaborators from the University of Tsukuba in Japan and the Friedrich Miescher Institute for Biomedical Research in Switzerland used the whiskers of laboratory mice to map how distinct sensor neurons, presumably detecting different mechanical stimuli, are connected to signal the brain. When the are activated, they send the signal along an axon—a long, slender nerve fiber than conducts electric impulses to the brain. The researchers traced signals running the long path from the mouse's whiskers to the brain.

Wang's group used a combination of genetic engineering and fluorescent tags delivered by viruses to color-code four different kinds of and map their connections.

Earlier work by Wang and others had found that all of the 100 to 200 sensors associated with a single whisker project their axons to a large structure representing that whisker in the brain. Each whisker has its own neural representation structure.

"People have thought that within the large whisker-representing structure, there will be finer-scale, labeled lines," Wang said. "In other words, different touch sensors would send information through separate parallel pathways, into that large structure. But surprisingly, we did not find such organized pathways. Instead, we found a completely unorganized mosaic pattern of connections within the large structure. Information from different sensors is intermixed already at the first relay station inside the ."

Wang said the next step will be to stimulate the labeled circuits in different ways to see how impulses travel the network.

"We want to figure out the exact functions and signals transmitted by different during natural tactile behaviors and determine their exact roles on the perception of textures," she said.

Explore further: One neuron has huge impact on brain behaviour

More information: "The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column," Katsuyasu Sakurai, Mosahiro Akiyama, Bin Cai, Alexandra Scott, Bao-Xia Han, Jun Takatoh, Markus Sigrist, Silvia Arber, Fan Wang. Cell Reports, Oct. 10, 2013. DOI: 10.1016/j.celrep.2013.08.051

Related Stories

A faster vessel for charting the brain

July 25, 2013

Princeton University researchers have created "souped up" versions of the calcium-sensitive proteins that for the past decade or so have given scientists an unparalleled view and understanding of brain-cell communication.

Birth gets the brain ready to sense the world

October 14, 2013

Neurons that process sensory information such as touch and vision are arranged in precise, well-characterized maps that are crucial for translating perception into understanding. A study published by Cell Press on October ...

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

Neuroscientists reveal how the brain can enhance connections

November 18, 2015

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.