A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

Figure 1: The Goofy protein (red) is expressed in many olfactory sensory neurons (stained green). Credit: 2013 T. Kaneko-Goto et al.

Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein called Goofy within sensory neurons in the noses of mice that helps to sharpen their sense of smell.

Goofy is expressed in the (Fig. 1), the inner surface of the nose where odors are initially detected by receptors on olfactory . Yoshihara and his colleagues homed in on this particular protein because it contains a motif called a signal peptide, which is also found on many other transmembrane and secreted proteins known to have important functions in regulating the sense of smell.

In genetically engineered to lack Goofy, the researchers observed that the in the olfactory system maintained their normal connections with each other, suggesting that Goofy does not play a role in controlling the formation of the olfactory neural circuitry. However, they found that adenylyl cyclase III—a key enzyme involved in olfactory signaling in —was mislocalized in Goofy-deficient mice. This indicates that Goofy is required for correct trafficking of this protein. "It is likely that the proper localization of these molecules is crucial for the normal functioning of sensory systems," says Yoshihara.

Olfactory neurons contain long membranous extensions called cilia that stretch into mucus in the nose to detect odorant chemicals. Goofy-deficient mice had shorter olfactory cilia compared to normal mice, suggesting that Goofy regulates the development of cilia in . Additionally, the researchers found that olfactory epithelium cells from Goofy-deficient mice produced weaker electrical responses than normal cells when exposed to various odorants. Goofy-deficient mice also exhibited less fear behavior compared to normal mice when exposed to an odor from foxes—one of their natural predators. According to the researchers, these findings show that Goofy is required for mice to maintain their keen sensitivity to odorant information in their environment.

"A fully functioning is important for our health and increases our quality of life," Yoshihara says. "Because the human genome also contains the Goofy gene, which is most likely expressed in our nose, the present findings may have important implications for human disorders of olfactory perception, including anosmia—the loss of the sense of smell," he explains.

More information: Kaneko-Goto, T., et al. Goofy coordinates the acuity of olfactory signaling, The Journal of Neuroscience 33, 12987–12996 (2013). dx.doi.org/10.1523/JNEUROSCI.4948-12.2013

Related Stories

Recommended for you

Disrupted biological clock linked to Alzheimer's disease

date 2 minutes ago

New research has identified some of the processes by which molecules associated with neurological diseases can disrupt the biological clock, interfere with sleep and activity patterns, and set the stage for ...

How the brain remembers pain

date 11 minutes ago

Scientists from Berne have discovered a mechanism, which is responsible for the chronification of pain in the brain. The results of their study suggest new strategies for the medical treatment of chronic ...

Crossing fingers can reduce feelings of pain

date 20 hours ago

How you feel pain is affected by where sources of pain are in relation to each other, and so crossing your fingers can change what you feel on a single finger, finds new UCL research.

Research explains the formation of long-term motor memory

date 22 hours ago

Recent studies of long-term motor memory have pointed out the involvement of synaptic plasticity at multiple sites in the cerebellum, but the physiological mechanism remains unclear. Now results from a collaboration ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.