Researcher finds a new role for the benefits of oxygen

October 4, 2013

In a study published in published in EMBO Molecular Medicine, a Dartmouth researcher found that dying heart cells are kept alive with spikes of oxygen.

During a attack when the flow of -rich blood to a section of the heart is interrupted, and not quickly restored, heart muscle begins dying. Deprived of oxygen and other essential nutrients, cell death continues occurring over a period of time leading to progressive loss of heart function and .

Current therapies are not effective at limiting cell loss—they only slow down the progression of congestive heart failure.

Periannan Kuppusamy, PhD, professor of radiology at Geisel School of Medicine at Dartmouth, found that dying still contain enough oxygen for metabolism, and additional short-term spikes of oxygen keep the cells alive and active.

His research team used an animal model of and discovered that daily administration of a higher concentration of oxygen for a short period of time each day induced spikes in myocardial oxygenation, which prevented myocardial injury.

"We all know that oxygen is crucial for survival, but it is intriguing to know that the same oxygen can be used like a drug to treat disease," Kuppusamy says.

Curious about the molecular mechanism of oxygen in treating myocardial injury, he began examining the effect of oxygen on p53, a transcription factor that regulates cell cycle and triggers programmed . To his surprise he saw the 'oxygen spikes' altering the function of p53 from a death-inducing protein, to promoting transcription of genes that help dying cardiac cells survive.

Kuppusamy sees a link between the results of the present study to the age-old practice of breathing exercises for human well-being. He says, "Controlled breathing can increase tissue oxygenation, and if practiced on a daily basis, can lead to suppression of disease progression."

His research at Dartmouth also focusses on the effect of oxygen in cancer therapy.

Explore further: Compound developed by scientists protects heart cells during and after attack

More information:

Related Stories

A coordinated response to cardiac stress

March 1, 2013

Myocardial hypertrophy, a thickening of the heart muscle, is an adaptation that occurs with increased stress on the heart, such as high blood pressure. As the heart muscle expands, it also requires greater blood flow to maintain ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...

Gut microbes signal to the brain when they are full

November 24, 2015

Don't have room for dessert? The bacteria in your gut may be telling you something. Twenty minutes after a meal, gut microbes produce proteins that can suppress food intake in animals, reports a study published November 24 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.