Scientists discover tool to understand nerve cells

October 25, 2013

(Medical Xpress)—A team of international scientists is one step closer to understanding neurodegenerative diseases after developing a tool to explore how nerve cells become damaged.

The research team, led by Dr Marc Hammarlund at Yale University, Dr Hang Lu at Georgia Institute of Technology and Massimo Hilliard at The University of Queensland (UQ), used a fluorescent protein named KillerRed to damage neurons in roundworms.

Dr Massimo Hilliard from UQ's Queensland Brain Institute (QBI) said the team then used a single light stimulus on producing KillerRed, and the cells, in turn, generated (ROS) that damage the neuron.

The tool allowed the team to study how the worm's nerve cells responded to excessive free radicals triggered by KillerRed.

"This new developed will allow us not only to investigate , but also to understand how neurons respond to damage caused by ROS, which are generated in several ," Dr Hilliard said.

"One of the best way to interrogate a neuronal circuit is to destroy some of its specific components and then study the resulting effects."

"The study showed KillerRed activation was efficient and versatile, functioning in several different neuronal types, and highly specific, leaving unharmed surrounding tissues and cells that were not expressing this molecule."

These results might have broad implications in brain research providing valuable insights on neuronal function as well as how neurons get damaged and die.

The publication, "Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen using KillerRed," will be published in Cell Reports.

Explore further: Molecule key to sustaining brain communication

More information:

Related Stories

Keeping it local: Protecting the brain starts at the synapse

October 22, 2013

New research by scientists at UC San Francisco shows that one of the brain's fundamental self-protection mechanisms depends on coordinated, finely calibrated teamwork among neurons and non-neural cells knows as glial cells, ...

How neurons get wired

August 14, 2013

Two different versions of the same signaling protein tell a nerve cell which end is which, UA researchers have discovered. The findings could help improve therapies for spinal injuries and neurodegenerative diseases.

Recommended for you

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...

Going for a run could improve cramming for exams

October 19, 2016

Ever worried that all the information you've crammed in during a study session might not stay in your memory? The answer might be going for a run, according to a new study published in Cognitive Systems Research.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.