Scientists discover tool to understand nerve cells

October 25, 2013

(Medical Xpress)—A team of international scientists is one step closer to understanding neurodegenerative diseases after developing a tool to explore how nerve cells become damaged.

The research team, led by Dr Marc Hammarlund at Yale University, Dr Hang Lu at Georgia Institute of Technology and Massimo Hilliard at The University of Queensland (UQ), used a fluorescent protein named KillerRed to damage neurons in roundworms.

Dr Massimo Hilliard from UQ's Queensland Brain Institute (QBI) said the team then used a single light stimulus on producing KillerRed, and the cells, in turn, generated (ROS) that damage the neuron.

The tool allowed the team to study how the worm's nerve cells responded to excessive free radicals triggered by KillerRed.

"This new developed will allow us not only to investigate , but also to understand how neurons respond to damage caused by ROS, which are generated in several ," Dr Hilliard said.

"One of the best way to interrogate a neuronal circuit is to destroy some of its specific components and then study the resulting effects."

"The study showed KillerRed activation was efficient and versatile, functioning in several different neuronal types, and highly specific, leaving unharmed surrounding tissues and cells that were not expressing this molecule."

These results might have broad implications in brain research providing valuable insights on neuronal function as well as how neurons get damaged and die.

The publication, "Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen using KillerRed," will be published in Cell Reports.

Explore further: Molecule key to sustaining brain communication

More information: www.cell.com/cell-reports/fulltext/S2211-1247(13)00546-9

Related Stories

How neurons get wired

August 14, 2013

Two different versions of the same signaling protein tell a nerve cell which end is which, UA researchers have discovered. The findings could help improve therapies for spinal injuries and neurodegenerative diseases.

Keeping it local: Protecting the brain starts at the synapse

October 22, 2013

New research by scientists at UC San Francisco shows that one of the brain's fundamental self-protection mechanisms depends on coordinated, finely calibrated teamwork among neurons and non-neural cells knows as glial cells, ...

Recommended for you

Closing the loop with optogenetics

August 28, 2015

An engineering example of closed-loop control is a simple thermostat used to maintain a steady temperature in the home. Without it, heating or air conditioning would run without reacting to changes in outside conditions, ...

Self-control saps memory, study says

August 26, 2015

You're driving on a busy road and you intend to switch lanes when you suddenly realize that there's a car in your blind spot. You have to put a stop to your lane change—and quickly.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.