Stem cells could set up future transplant therapies

October 31, 2013
Foregut stem cells (green) differentiated into pancreatic cells expressing insulin. The development method pioneered by Cambridge researchers enables the production of an uncontaminated population of foregut cells, which could then be further differentiated as pancreatic cells for therapeutic use. Credit: University of Cambridge

(Medical Xpress)—Scientists have developed a new method for creating stem cells for the human liver and pancreas. This method could enable both cell types to be grown in sufficient quantities for clinical use.

Using the technique, researchers have for the first time been able to grow a pure, self-renewing population of stem specific to the human foregut - the section of the digestive system that includes the liver and pancreas. These digestive cells could then be developed further to produce liver or pancreatic cells.

Stem cells have the potential to be used to replace dying or with and have potential wide-ranging uses in medicine such as organ replacement, bone replacement and treatment of neurodegenerative diseases.

This method significantly improves on existing techniques for cultivating these stem cells and raises the possibility that, with further work, they could be grown in large numbers. That would make it possible to use them for regenerative therapies, such as repairing damaged organs or tissues in the body.

"We have developed a cell culture system which allows us to specifically isolate foregut cells in the lab," Dr Nicholas Hannan, from the University of Cambridge Wellcome Trust MRC Stem Cell Institute, Department for Surgery, explained. Hannan led the study, which was carried out in the lab of Dr Ludovic Vallier, joint Faculty member of the Wellcome Trust Sanger Institute and the University of Cambridge.

"These cells have huge implications for regenerative medicine, because they are the precursors to the thyroid, upper airways, lungs, liver, pancreas, stomach and biliary systems. We now have a system where we may be able to create all these from the same starting population."

To grow pancreatic or liver cells, stem cells are differentiated into the endoderm - the primary tissue layer associated with the digestive and respiratory systems. This provides a base population of cells that researchers can then try to develop as more specialised cells, such as heart or . Unfortunately, other cell types can grow, making it difficult to identify the in the lab and complicating the application of these cells in transplant therapies.

The new approach overcomes some of these problems that currently limit scientists' ability to grow cells associated with this region in sufficiently large numbers for clinical use.

By manipulating the signal pathways of the cells and varying the environment in which the cells were developed, researchers were able to isolate the precise treatments needed to drive differentiation of cells associated with the foregut itself. When heavily contaminated stem cell populations were developed under these conditions, the contaminating cells eventually died out.

The universal nature of this culture system takes a step towards a universal system that could be used to treat any patient requiring cells for transplantation purposes.

The cells generated are true stem cells because they are able to self-renew and can differentiate towards any part of the foregut. Because they are also still at the stage where they can self-renew, they can be grown in large enough numbers to be used in clinical therapies. The team was also able to show that these human foregut do not form tumours, which means that they could be safely injected for therapeutic purposes, without having adverse side effects.

"What we have now is a better starting point - a sustainable platform for producing liver and ," Dr Ludovic Vallier, senior author of the study, said. "It will improve the quality of the cells that we produce and it will allow us to produce the large number of uncontaminated cells we need for the clinical application of stem cell therapy."

Explore further: Pancreatic stem cells isolated from mice

More information: Hannan, N. et al. Generation of Multipotent Foregut Stem Cells from Human Pluripotent Stem Cells, Stem Cell Reports, 2013. DOI: 10.1016/j.stemcr.2013.09.003

Related Stories

Pancreatic stem cells isolated from mice

September 17, 2013

Scientists have succeeded in growing stem cells that have the ability to develop into two different types of cells that make up a healthy pancreas. The research team led by Dr. Hans Clevers of the Hubrecht Institute, The ...

New 3-D method used to grow miniature pancreas

October 15, 2013

An international team of researchers from the University of Copenhagen have successfully developed an innovative 3D method to grow miniature pancreas from progenitor cells. The future goal is to use this model to help in ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.