Super-enhancers seen as 'Rosetta Stone' for dialog between genes and disease

Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named "super-enhancers"—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.

The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead Member Richard Young, could ultimately play important roles in disease diagnostics and therapeutics.

In April, Young reported that while the total number of genetic control elements is likely in the millions, only a few hundred super-enhancers regulate the key genes that give each cell its unique properties and functions. At the time, Young hinted that the discovery, which was based on work primarily in , would help to solve the regulatory circuitry of all . This latest research represents a significant step toward that goal, producing a catalog of super-enhancers in nearly 100 human cell and tissue types.

"We've gone from a few cells to a broad swath of human cell types to create this resource and make it available to the biomedical research community," says Young, who is also a professor of biology at MIT.

Young notes that the striking finding of the new study is that beyond their roles in control of healthy cells, super-enhancers are involved in regulating the function—and dysfunction—of diseased cells.

"We were surprised that for so many different diseases, mutations associated with the disease occur in super-enhancers" says postdoctoral scientist Brian Abraham, an author of the study. Indeed, he and other researchers in Young's lab found in disease-relevant genetic mutations associated with Alzheimer's disease, diabetes, and many in genomic regions under the control of specific super-enhancers.

The researchers also found super-enhancers operating in particularly insidious fashion across a broad spectrum of cancers, observing cancer assembling their own super-enhancers to overproduce malevolent oncogenes that drive such cancer hallmarks as hyperproliferation, invasion, and metastasis. Young believes that identifying, mapping, and disrupting super-enhancers could alter the way cancers are managed in the clinic.

"When we focus on personalized medicine for cancer patients, super-enhancers could serve as useful biomarkers for tracking and understanding the evolution of a person's cancer," says Young. "Ultimately, super-enhancers may well become important targets for therapeutic intervention."

This work was supported by grants from the National Institutes of Health (grants HG002668, CA109901, and CA146445).

More information: "Super-enhancers in the control of cell identity and disease", Cell, October 10, 2013

Related Stories

Genetic master controls expose cancers' Achilles' heel

Apr 11, 2013

In a surprising finding that helps explain fundamental behaviors of normal and diseased cells, Whitehead Institute scientists have discovered a set of powerful gene regulators dubbed "super-enhancers" that control cell state ...

Chaos in the cell's command center

Feb 01, 2012

A defective operating system is never a good thing. Like computers, our cells depend on operating systems to drive normal functions. Gene expression programs comprise the software code our cells rely on, with each cell type ...

Scientists uncover how immune cells sense who they are

Dec 11, 2012

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the National Institutes of Health, have demonstrated that DNA previously thought to be "junk" plays a critical role ...

Recommended for you

Changes in scores of genes contribute to autism risk

23 hours ago

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.