CWRU team building an MRI-guided robotic heart catheter

November 11, 2013

In a matter of years, a doctor may see real-time images of a patient's beating heart and steer a robotic catheter through its chambers using the push and pull of magnetic fields while the patient lies inside a magnetic resonance imager.

Researchers at Case Western Reserve University have received a $1.3 million grant from the National Institutes of Health to perfect such technology over the next four years.

The project aims to improve treatment of arterial fibrillation—an irregular beat that occurs when electrical conductivity in the short-circuits and can lead to a stroke or heart disease.

To treat the problem, doctors slip a through a vein in the thigh up into the heart, where an electrode tip is used to burn, or ablate, the tissues involved in the short-circuiting. When successful, this allows the heart's electrical currents to travel smoothly, resulting in normal beating and blood flow.

But doctors sometimes have trouble maintaining contact with the target tissue. A beating heart moves the target, and flowing blood creates turbulence similar to airplanes through wind currents. The two-dimensional view produced through fluoroscopy imaging is often grainy or blurry. The result is surgeons sometimes burn more tissue than necessary, or not enough to eliminate the problem.

"With our technologies, we believe physicians will be able to accurately navigate and target tissues; they will see exactly where they are inside the heart in and see the tissues they are ablating in real time," said M. Cenk Cavusoglu, professor of electrical engineering and computer science and principal investigator on the project.

Doctors will still hand-feed the catheter from thigh to heart. But once there, the robotics will take over, Cavusoglu said.

To make a catheter robotic, the researchers have wrapped the inch behind the tip in tiny copper coils. By passing an electrical current through them, the coils create a .

When this magnetic field is paired with the magnetic field created inside the MRI to produce images, the catheter has the ability to move. In order to control the movement, Cavusoglu's lab is now developing software to use the fields like a pair of deftly controlled bar magnets.

A doctor using a joystick or touch screen will guide the catheter inside the patient. In the heart, to turn the catheter to the left or right, a current will be applied to coils in either direction.

The magnetic fields can produce the same effect as aiming two like poles of magnets at each other: they repel. Or aiming two unlike poles at each other: they attract. But, because the MRI field is much stronger, it's the catheter that moves. And, because the fields encircle the catheter, it can move up and down, not just side to side.

Nicole Seiberlich, an assistant professor of , has already developed the technology to see images inside the body 10 times faster than what's commercially available, without sacrificing the clarity for which MRI's are renown.

She and colleagues will continue to increase the speed, enabling a doctor to clearly see the landscape inside the heart in three dimensions in real time.

Mark Griswold, professor of radiology at Case Western Reserve School of Medicine, had begun investigating the idea of a inside an MRI several years ago, but his lab dropped the effort when the device could not be properly controlled.

Jeff Duerk, dean of the Case School of Engineering and a professor of biomedical engineering who specializes in imaging, introduced Cavusoglu to Griswold, Seiberlich and others in their labs. When the others learned Cavusoglu had control algorithms and was looking for a place to use them, they restarted the effort.

To maintain a steady aim and contact with target tissues inside the , Cavusoglu's lab has already developed algorithms that automatically compensate for the contracting and expanding muscles and the pulsing blood.

"His algorithms come from the automated-car-driving world—they are predictive modeling—and our work comes from clinical medicine," Griswold said. "But because we got to know each other, we could see how we can work together."

In addition to the researchers named above, Jeff Ustin, MD, an assistant professor of medicine at Case Western Reserve School of Medicine and researcher and surgeon at the Cleveland Clinic, is assisting with the project.

Explore further: NIH funds development of novel robots to assist people with disabilities, aid doctors

Related Stories

Study: Heart catheter procedures facilitated by MRIs

September 10, 2012

(Medical Xpress)—Heart catheter procedures guided by magnetic resonance imaging (MRI) are as safe as X-ray-guided procedures and take no more time, according to a pilot study conducted at the National Institutes of Health. ...

New MRI method fingerprints tissues and diseases

March 13, 2013

A new method of magnetic resonance imaging (MRI) could routinely spot specific cancers, multiple sclerosis, heart disease and other maladies early, when they're most treatable, researchers at Case Western Reserve University ...

Simplifying heart surgery with stretchable electronics devices

November 15, 2012

(Medical Xpress)—Researchers at the McCormick School of Engineering are part of a team that has used stretchable electronics to create a multipurpose medical catheter that can both monitor heart functions and perform corrections ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.