Research gives new insight into how antidepressants work in the brain

November 8, 2013

(Medical Xpress)—Research from Oregon Health & Science University's Vollum Institute, published in the current issue of Nature, is giving scientists a never-before-seen view of how nerve cells communicate with each other. That new view can give scientists a better understanding of how antidepressants work in the human brain—and could lead to the development of better antidepressants with few or no side effects.

The article in today's edition of Nature came from the lab of Eric Gouaux, Ph.D., a senior scientist at OHSU's Vollum Institute and a Howard Hughes Medical Institute Investigator. The article describes research that gives a better view of the structural biology of a protein that controls communication between nerve cells. The view is obtained through special structural and biochemical methods Gouaux uses to investigate these neural proteins.

The Nature article focuses on the structure of the dopamine transporter, which helps regulate dopamine levels in the brain. Dopamine is an essential neurotransmitter for the human body's central nervous system; abnormal levels of dopamine are present in a range of neurological disorders, including Parkinson's disease, drug addiction, depression and schizophrenia. Along with dopamine, the neurotransmitters noradrenaline and serotonin are transported by related transporters, which can be studied with greater accuracy based on the dopamine transporter structure.

The Gouaux lab's more detailed view of the dopamine transporter structure better reveals how anti-depressants act on the transporters and thus do their work.

The more detailed view could help scientists and pharmaceutical companies develop drugs that do a much better job of targeting what they're trying to target—and not create side effects caused by a broader blast at the brain proteins.

"By learning as much as possible about the structure of the transporter and its complexes with antidepressants, we have laid the foundation for the design of new molecules with better therapeutic profiles and, hopefully, with fewer deleterious ," said Gouaux.

Gouaux's latest dopamine transporter research is also important because it was done using the molecule from fruit flies, a dopamine transporter that is much more similar to those in humans than the bacteria models that previous studies had used.

The dopamine transporter article was one of two articles Gouaux had published in today's edition of Nature. The other article also dealt with a modified amino acid transporter that mimics the mammalian neurotransmitter transporter proteins targeted by antidepressants. It gives new insights into the pharmacology of four different classes of widely used antidepressants that act on certain transporter proteins, including transporters for dopamine, serotonin and noradrenaline. The second paper in part was validated by findings of the first paper—in how an antidepressant bound itself to a specific transporter.

"What we ended up finding with this research was complementary and mutually reinforcing with the other work—so that was really important," Gouaux said. "And it told us a great deal about how these transporters work and how they interact with the antidepressant molecules."

Gouaux's discoveries over the years in neurotransmission have established him as one of the top investigators in his field. His research has important implications for understanding the mechanisms of not just , but also drugs used for the treatment of a wide range of psychiatric and neurological diseases.

Explore further: Protein on 'speed' linked to ADHD

Related Stories

Protein on 'speed' linked to ADHD

July 8, 2008

A genetic change in the dopamine transporter – one of the brain's dopamine-handling proteins – makes it behave as if amphetamine is present and "run backward," Vanderbilt University Medical Center investigators report ...

Discovery could reduce chemotherapy's side effects

March 11, 2012

A team of researchers at Duke University has determined the structure of a key molecule that can carry chemotherapy and anti-viral drugs into cells, which could help to create more effective drugs with fewer effects to healthy ...

Challenging Parkinson's dogma

October 24, 2012

Scientists may have discovered why the standard treatment for Parkinson's disease is often effective for only a limited period of time. Their research could lead to a better understanding of many brain disorders, from drug ...

'Traffic' in our cells works both for and against us

May 1, 2013

A mechanism that permits essential substances to enter our cells while at the same time removing from them harmful components also has a "down side." This negative aspect prevents vital drugs, such as anti-cancer drugs, from ...

Compound enhances SSRI antidepressant's effects in mice

June 21, 2013

A synthetic compound is able to turn off "secondary" vacuum cleaners in the brain that take up serotonin, resulting in the "happy" chemical being more plentiful, scientists from the School of Medicine at The University of ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

beleg
not rated yet Nov 08, 2013
Is GLXY-13 finishing the last of it's clinical trials leading the antidepressant research here?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.