Malaria vaccine offers new mode of protection against disease

November 29, 2013
Malaria vaccine offers new mode of protection against disease
Malaria parasites carried by mosquitoes kill more than 660,000 people each year

(Medical Xpress)—A novel malaria vaccine developed at Oxford University has shown promising results in the first clinical trial to test whether it can protect people against the mosquito-borne disease.

The trial was carried out in Oxford by researchers led by Professor Adrian Hill of the Jenner Institute at Oxford University, along with colleagues from the biotechnology company Okairos.

Some of the adult volunteers were completely protected against malaria in this initial study of the vaccine's efficacy.

It's the first time that a vaccine has been shown to have a protective effect through a sufficiently high involving called CD8 T cells.

It is CD8 immune cells that are seen to mount a protective response against malaria in similar studies in mice.

Every existing vaccine in use – bar one – generates antibodies. But there are two arms to the body's immune system for fighting infection: antibodies and T cells. And this vaccine aims to stimulate an immune response involving T cells.

CD8 T cells are important because they are the primary killer cells in the immune system. They can attack nearly all types of – in this case liver cells infected with the . But this first demonstration of a large CD8 response from a vaccine could be relevant for tackling other diseases too.

'The vaccine was found to work by inducing CD8+ T cells that target the malaria parasite in the liver,' explains Professor Hill.

'For years a wide range of technologies have been assessed trying to induce protection through the cellular arm of the with CD8+ T cells. But this is the first time that this has been achieved for any vaccine type against any disease.'

The Phase IIa trial in Oxford involved 36 people in total, of which 14 healthy adults received two different virus-based vaccines with the same malaria antigen eight weeks apart.

Of those 14, three people were protected from the bites of malaria-infected mosquitoes. A further five had delayed onset of malaria, demonstrating that over 90% of the malaria parasites had been killed by the vaccine-induced immune response.

Importantly, the size of the CD8 T cell response in these volunteers correlated with the degree of protection from malaria, suggesting that a sufficiently high cellular immune response is protective.

Ten further volunteers received only one of the vaccines and there were 12 controls. None of these people saw any protection against malaria from mosquito bites on the arm. All volunteers were closely monitored for malaria symptoms throughout, and those getting the disease were treated rapidly with drugs.

The trial results are published in the journal Nature Communications. The study was funded by the Medical Research Council with support from the National Institute for Health Research and the Wellcome Trust.

The results of larger Phase IIb trials of the efficacy of the vaccine in Africa are expected in 2014. They will determine more about the efficacy of this where it is needed most.

If results continue to be positive, Professor Hill thinks that the best protection against malaria may come from combining the Oxford-developed vaccine with another that targets the sporozoite stage of the malaria parasite's life cycle. One such vaccine developed by GSK is in late-stage clinical trials.

The GSK vaccine called RTS,S works by stimulating antibodies against the parasites before they enter the liver. Those that reach the liver would be mopped up by T cells stimulated by the Oxford .

Professor Hill and colleagues are currently carrying out a study in the UK to test how the GSK and Oxford vaccines might work together.

Malaria kills more than 660,000 people each year, most of whom are children in Africa.

Explore further: Weakened malaria parasites form basis of new vaccine strategy

More information: www.nature.com/ncomms/2013/131128/ncomms3836/full/ncomms3836.html

Related Stories

Weakened malaria parasites form basis of new vaccine strategy

September 8, 2011

Using live but weakened malaria parasites as the basis of a vaccine represents a potentially encouraging anti-malaria strategy, according to results of follow-up animal studies performed after the conclusion of a recent clinical ...

Australian researchers close in on malaria vaccine

July 2, 2013

Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.

Investigational malaria vaccine found safe and protective

August 8, 2013

An investigational malaria vaccine has been found to be safe, to generate an immune system response, and to offer protection against malaria infection in healthy adults, according to the results of an early-stage clinical ...

Mosquito bites deliver potential new malaria vaccine

September 11, 2013

This study suggests that genetically engineered malaria parasites that are stunted through precise gene deletions (genetically attenuated parasites, or "GAP") could be used as a vaccine that protects against malaria infection. ...

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.