Does obesity reshape our sense of taste?

by Charlotte Hsu
Does obesity reshape our sense of taste?
These re taste cells under a microscope, expressing green fluorescent protein. A new University at Buffalo study finds that obese mice had fewer taste cells capable of detecting sweetness than mice with slimmer physiques. The white bar is 20 microns. Credit: Kyle Hacker

Obesity may alter the way we taste at the most fundamental level: by changing how our tongues react to different foods.

In a Nov. 13 study in the journal PLOS ONE, University at Buffalo biologists report that being severely overweight impaired the ability of mice to detect sweets.

Compared with slimmer counterparts, the plump mice had fewer that responded to sweet stimuli. What's more, the cells that did respond to sweetness reacted relatively weakly.

The findings peel back a new layer of the mystery of how obesity alters our relationship to food.

"Studies have shown that obesity can lead to alterations in the brain, as well as the nerves that control the peripheral taste system, but no one had ever looked at the cells on the tongue that make contact with food," said lead scientist Kathryn Medler, PhD, UB associate professor of biological sciences.

"What we see is that even at this level—at the first step in the taste pathway—the taste themselves are affected by obesity," Medler said. "The have fewer taste cells that respond to sweet stimuli, and they don't respond as well."

The research matters because taste plays an important role in regulating appetite: what we eat, and how much we consume.

How an inability to detect sweetness might encourage weight gain is unclear, but past research has shown that yearn for sweet and savory foods though they may not taste these flavors as well as thinner people.

Medler said it's possible that trouble detecting sweetness may lead obese mice to eat more than their leaner counterparts to get the same payoff.

Learning more about the connection between taste, appetite and is important, she said, because it could lead to new methods for encouraging healthy eating.

"If we understand how these taste cells are affected and how we can get these cells back to normal, it could lead to new treatments," Medler said. "These cells are out on your tongue and are more accessible than cells in other parts of your body, like your brain."

The new PLOS ONE study compared 25 normal mice to 25 of their littermates who were fed a high-fat diet and became obese.

To measure the animals' response to different tastes, the research team looked at a process called calcium signaling. When cells "recognize" a certain taste, there is a temporary increase in the calcium levels inside the cells, and the scientists measured this change.

The results: Taste cells from the obese mice responded more weakly not only to sweetness but, surprisingly, to bitterness as well. Taste cells from both groups of animals reacted similarly to umami, a flavor associated with savory and meaty foods.

More information: www.plosone.org/article/info%3… journal.pone.0079403

Related Stories

A new model to understand the supertasting phenomenon

Jun 21, 2012

Supertasting describes the ability to strongly detect food flavors such as bitter and sweet, and it can affect a person's food preferences. For example, supertasters are often averse to green vegetables because their bitter ...

How do you stop tasting?

Aug 02, 2011

New findings may lend insight into why some people are especially sensitive to bitter tastes. Scientists from the Monell Center and Givaudan Flavors have identified a protein inside of taste cells that acts to shorten bitter ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

13 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

18 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

19 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.