Study identifies protein essential for immune recognition, response to viral infection

November 24, 2013
A confocal microscopic image showing the red-tagged GEF-H1 protein, which researchers believe is essential to the immune system's response against viral infection. Credit: Hans-Christian Reinecker/MGH

A Massachusetts General Hospital (MGH)-led research team has identified an immune cell protein that is critical to setting off the body's initial response against viral infection. The report that will be published in an upcoming issue of Nature Immunology and is receiving early online release describes finding that a protein called GEF-H1 is essential to the ability of macrophages – major contributors to the innate immune system – to respond to viral infections like influenza.

"The detection of viral genetic material inside an infected cell is critical to initiating the responses that signal the to fight an infection and prevent its spread throughout the body," says Hans-Christian Reinecker, MD, of the Center for the Study of Inflammatory Bowel Disease in the MGH Gastrointestinal Unit, senior author of the report. "Our findings indicate that GEF-H1 may control immune responses against a wide variety of RNA and DNA viruses that pose a threat to human health."

The body's first line of defense against infection, the rapidly responds to invading pathogens by mobilizing , chemical factors called cytokines and antimicrobial peptides. When viruses invade cells, they often move towards the nucleus in order to replicate and sometimes to integrate their own genetic material into that of the host cell, traveling along structures called microtubules that cells use for internal protein transport. But how microtubule-based movement of viral components contributes to induction of the immune response has been unknown.

GEF-H1 is known to bind to microtubules, and previous research indicated that it has a role in immune recognition of bacteria. A series of experiments by Reinecker's team found that GEF-H1 is expressed in macrophages – key components of the system – and activated in response to viral RNA and that it controls the expression of beta interferon and other cytokines. Mice in which expression of GEF-H1 was knocked out were unable to mount an effective to influenza A and to encephalomyocarditis, a virus that causes several types of infection in animals.

"The sensing of intracellular viral nucleic acids for induction of interferons is so important that many viruses, including influenza A, have evolved specific strategies to interfere with activation of the interferon defense system," says Reinecker, an associate professor of Medicine at Harvard Medical School. "We are hopeful that this discovery will allow the development of new strategies to curtail viral mechanisms that impede the immune responses to infections that are often associated with high mortality rates."

Explore further: Who goes there? Novel complex senses viral infection

More information: GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses, DOI: 10.1038/ni.2766

Related Stories

Who goes there? Novel complex senses viral infection

June 23, 2011

Double-stranded (ds) RNA viruses are a diverse group of viruses that include rotaviruses, a common cause of gastroenteritis. The ability of the immune system to detect and destroy viruses is critical for human health and ...

Scientists discover why newborns get sick so often

October 31, 2013

If you think cold and flu season is tough, trying being an infant. A new research finding published in the November 2013 issue of the Journal of Leukocyte Biology sheds new light on why newborns appear to be so prone to getting ...

Recommended for you

Epigenomic changes are key to innate immunological memory

August 31, 2015

A research team led by Keisuke Yoshida and Shunsuke Ishii of the RIKEN Molecular Genetics Laboratory has revealed that epigenomic changes induced by pathogen infections, mediated by a transcription factor called ATF7, are ...

Team finds early inflammatory response paralyzes T cells

August 18, 2015

In a discovery that is likely to rewrite immunology text books, researchers at UC Davis have found that early exposure to inflammatory cytokines, such as interleukin 2, can "paralyze" CD4 T cells, immune components that help ...

SIV shrugs off antibodies in vaccinated monkeys

August 11, 2015

New research on monkeys vaccinated against HIV's relative SIV calls into question an idea that has driven AIDS vaccine work for years. The assumption: a protective vaccine only needs to stimulate moderate levels of antibodies ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.