Scientists define brain network behind attention, daydreaming

by Geoffrey Mohan

Stanford neuroscientists have for the first time traced how three brain networks mediate the mind's internal focus and its processing of stimuli from the outside world.

By stimulating neurons with electromagnets, the researchers demonstrated how the brain's executive and salience networks - crucial for cognition and decision-making - inhibit the default mode network, which centers on self-directed processes such as introspection, recall and rumination.

"As you engage in any task that's attention demanding, you activate these outside world networks - the executive and salience network - and you deactivate or turn down the default mode network," said Stanford neuroscientist and psychiatrist Dr. Amit Etkin, lead author of the study published online Monday in Proceedings of the National Academy of Sciences.

Dysfunction among those networks has been implicated in a broad array of , including depression, , autism and schizophrenia.

Imaging studies had long ago established strong correlations among these networks, but the causal path of their interplay had been indecipherable from the data produced through functional magnetic resonance imaging, or fMRI, according to the authors.

"You don't actually know which events were responsible for which other events," said Etkin, who also works with the Veterans Administration Palo Alto Health Care System. "That is, you don't really have a sense of causality."

The researchers used trans-cranial , a technique that applies a magnetic field to alter the electrochemical signaling in neurons. It has been used for decades to test brain function, and has been approved for treatment of depression.

When applied to discreet areas in the cortex, the magnetic fields provoked responses, evident on fMRI scans, that resembled voluntary brain activity. Researchers then measured the effect of stimulating the executive and salience networks, and recorded a drop in activity in the . When they used a low-frequency magnetic field to inhibit the executive and salience network, the default mode showed heightened activity.

The study also turned up intriguing clues toward new therapies. One of the executive network nodes they stimulated was closely associated with inhibiting a specific area of the default mode that scientists believe is crucial to the antidepressant effects of magnetic stimulation and drug therapies. That could offer neurological clues to why magnetic stimulation appears to work - an effect that has remained somewhat mysterious.

"We're already starting to think about how to use this for novel treatments," Etkin said. "If the default mode were abnormal in patients - which we know to be true for a range of psychiatric disorders - and you knew how to modulate it in the right way, which is what this study provides, then you would have a very important insight into how to potentially remediate these circuits for treatment of these disorders."

Related Stories

Imaging the magnetically stimulated brain

date Nov 19, 2013

(Medical Xpress)—MRI scanners have steadily increased in power, giving researchers ever finer-grained snapshots of the brain in action. However just as modern day fighters can pull high G turns that would ...

Researchers show brain's battle for attention

date Apr 11, 2013

(Medical Xpress)—We've all been there: You're at work deeply immersed in a project when suddenly you start thinking about your weekend plans. It happens because behind the scenes, parts of your brain are ...

Brain network decay detected in early Alzheimer's

date Aug 19, 2013

In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in ...

Recommended for you

AAN: phenytoin neuroprotective in optic neuritis

date Apr 17, 2015

(HealthDay)—Phenytoin appears to be neuroprotective in acute optic neuritis (AON), according to a study scheduled to be presented at the annual meeting of the American Academy of Neurology, held from April ...

How a jab to the ribs jolts the brain into action

date Apr 17, 2015

A short jab in the ribs instantly arouses a drowsy colleague during a long and dreary work meeting. A new study by Yale neurobiologists describes just what happens in the brain immediately following that ...

How do we hear time within sound?

date Apr 16, 2015

How does our auditory system represent time within a sound? A new study published in PLOS Computational Biology investigates how temporal acoustic patterns can be represented by neural activity within audito ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.