Scientists define brain network behind attention, daydreaming

November 20, 2013 by Geoffrey Mohan

Stanford neuroscientists have for the first time traced how three brain networks mediate the mind's internal focus and its processing of stimuli from the outside world.

By stimulating neurons with electromagnets, the researchers demonstrated how the brain's executive and salience networks - crucial for cognition and decision-making - inhibit the default mode network, which centers on self-directed processes such as introspection, recall and rumination.

"As you engage in any task that's attention demanding, you activate these outside world networks - the executive and salience network - and you deactivate or turn down the default mode network," said Stanford neuroscientist and psychiatrist Dr. Amit Etkin, lead author of the study published online Monday in Proceedings of the National Academy of Sciences.

Dysfunction among those networks has been implicated in a broad array of , including depression, , autism and schizophrenia.

Imaging studies had long ago established strong correlations among these networks, but the causal path of their interplay had been indecipherable from the data produced through functional magnetic resonance imaging, or fMRI, according to the authors.

"You don't actually know which events were responsible for which other events," said Etkin, who also works with the Veterans Administration Palo Alto Health Care System. "That is, you don't really have a sense of causality."

The researchers used trans-cranial , a technique that applies a magnetic field to alter the electrochemical signaling in neurons. It has been used for decades to test brain function, and has been approved for treatment of depression.

When applied to discreet areas in the cortex, the magnetic fields provoked responses, evident on fMRI scans, that resembled voluntary brain activity. Researchers then measured the effect of stimulating the executive and salience networks, and recorded a drop in activity in the . When they used a low-frequency magnetic field to inhibit the executive and salience network, the default mode showed heightened activity.

The study also turned up intriguing clues toward new therapies. One of the executive network nodes they stimulated was closely associated with inhibiting a specific area of the default mode that scientists believe is crucial to the antidepressant effects of magnetic stimulation and drug therapies. That could offer neurological clues to why magnetic stimulation appears to work - an effect that has remained somewhat mysterious.

"We're already starting to think about how to use this for novel treatments," Etkin said. "If the default mode were abnormal in patients - which we know to be true for a range of psychiatric disorders - and you knew how to modulate it in the right way, which is what this study provides, then you would have a very important insight into how to potentially remediate these circuits for treatment of these disorders."

Explore further: Brain connectivity altered in type 2 diabetes

Related Stories

Brain connectivity altered in type 2 diabetes

August 1, 2012

(HealthDay) -- Patients with type 2 diabetes mellitus (T2DM) have reduced functional connectivity in the default mode network, which is associated with insulin resistance in some brain regions, according to a study published ...

Researchers show brain's battle for attention

April 11, 2013

(Medical Xpress)—We've all been there: You're at work deeply immersed in a project when suddenly you start thinking about your weekend plans. It happens because behind the scenes, parts of your brain are battling for control.

Brain network decay detected in early Alzheimer's

August 19, 2013

In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in ...

Imaging the magnetically stimulated brain

November 19, 2013

(Medical Xpress)—MRI scanners have steadily increased in power, giving researchers ever finer-grained snapshots of the brain in action. However just as modern day fighters can pull high G turns that would drain consciousness ...

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.