'Sensational' barrels in the brain

November 18, 2013

A new study from scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai, gives an insight into how the circuitry for high resolution signal processing is wired in the brain.

Our sensory system has the ability to discriminate signals coming in from various sensory modalities such as visual, auditory, or somatosensory (touch) pathways at a very high resolution. This ability is directly linked to two parameters: One, the amount of that processes the incoming information- e.g. an image recorded by a camera with a higher number of pixels will be of a higher resolution. . The second parameter is the circuitry that enables discrimination i.e. nerves carrying sensation from two adjacent points on the body must connect to distinct portions of the cerebral cortex in order for the brain to perceive the two points as physically distinct.

In a study that will appear in the Proceedings of the National Academy of Sciences (PNAS) next week, a group led by Dr. Shubha Tole, a scientist at TIFR, reports that a gene named Lhx2 regulates the formation of neurocircuitry for touch in mice. In rodents, the whiskers on the snout serve as the 'fingers' in terms of sensing the environment. Nerves carrying sensation from each whisker traverse a pathway from the snout to the brain, ending in a small cluster of nerve fibers that connects with a ring of neurons in the cerebral cortex. This ring-and-cluster, called "barrel-and-core", is a signature of the fine microcircuitry that allows the mouse to assess its environment by rapid whisking. There are as many barrels as whiskers, which is necessary for the animal to be able to distinguish which whisker is being stimulated. The fundamental molecular mechanisms that govern the formation of this intertwined circuitry in the mouse model would be broadly applicable to other organisms such as humans and to other sensory modalities such as vision and hearing as well.

Ashwin Shetty, a PhD student in Dr. Tole's laboratory, showed that when the Lhx2 gene is knocked out in , none of the barrels form. Even more surprising, the barrel cores are also lost. In this scenario, even though the nerves bringing signals from the whiskers do make connections with the , the that brings about resolution and discrimination is profoundly defective. The discovery of Lhx2 as a central regulator of circuit formation in the brain will open the door to further studies that unravel exactly how this process is executed. These leads will also provide a mechanistic insight to studies from other groups that explore how defective circuit formation underlies neurological disorders such as autism, schizophrenia, and other disorders of brain function.

Explore further: Researchers identify molecule that orients neurons for high definition sensing

More information: Lhx2 regulates a cortex-specific mechanism for barrel formation, www.pnas.org/cgi/doi/10.1073/pnas.1311158110

Related Stories

Birth gets the brain ready to sense the world

October 14, 2013

Neurons that process sensory information such as touch and vision are arranged in precise, well-characterized maps that are crucial for translating perception into understanding. A study published by Cell Press on October ...

Problem-solving governs how we process sensory stimuli

June 25, 2013

Various areas of the brain process our sensory experiences. How the areas of the cerebral cortex communicate with each other and process sensory information has long puzzled neu-roscientists. Exploring the sense of touch ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.