New study shows a breadth of antisense drug activity across many different organs

©2013, Mary Ann Liebert, Inc., publishers

Antisense therapeutics, a class of drugs comprised of short nucleic acid sequences, can target a dysfunctional gene and silence its activity. A new study has shown that antisense drugs delivered systemically show activity in a wide range of tissues and organs, supporting their broad therapeutic potential in many disease indications, as described in an article in Nucleic Acid Therapeutics.

Gene Hung, Xiaokun Xiao, Raechel Peralta, Gourab Bhattacharjee, Sue Murray, Dan Norris, Shuling Guo, and Brett Monia, Isis Pharmaceuticals, Carlsbad, CA, developers of antisense therapeutics, compared two antisense drug chemistries (Generation 2.0 and 2.5) designed to target a gene that is expressed by virtually all cells in mice and non-human primates. They demonstrated antisense activity in many tissues and cell types, including liver, kidney, lung, muscle, adipose, adrenal gland, and peripheral nerves. The Generation 2.5 antisense compound was more effective in a wider range of tissues, according to the results presented in the article "Characterization of Target mRNA Reduction Through In Situ RNA Hybridization in Multiple Organ Systems Following Systemic Antisense Treatment in Animals."

"This seminal work addresses one of the most important questions facing the field, the demonstration and evaluation of multiple organ targeting by Nucleic Acid Therapeutics," says Executive Editor Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, MI. "This publication provides a benchmark for convergent analyses in multiple models for preclinical efficacy evaluation."

Nucleic Acid Therapeutics is under the editorial leadership of Co-Editors-in-Chief Bruce A. Sullenger, PhD, Duke Translational Research Institute, Duke University Medical Center, Durham, NC, and C.A. Stein, MD, PhD, City of Hope National Medical Center, Duarte, CA; and Executive Editor Graham C. Parker, PhD.

More information: The article is available on the Nucleic Acid Therapeutics website.

add to favorites email to friend print save as pdf

Related Stories

Can toxicity of a DNA drug be predicted and minimized?

Aug 27, 2013

New classes of therapeutic antisense oligonucleotides can have toxic effects on the liver. A novel machine learning-based approach used to predict the hepatotoxic potential of an antisense drug based on its ...

Recommended for you

LED exposure is not harmful to human dermal fibroblasts

2 hours ago

There was a time when no one thought about light bulbs—one blew, you screwed another one in. Nowadays, it's more complicated, as energy efficiency concerns have given rise to a slew of options, including ...

Virtual bacteria shed light on cystic fibrosis infections

3 hours ago

The two species of bacteria are genetically similar – both contagious, both drug-resistant, both preying upon people with cystic fibrosis or weakened immune systems – yet they go about their sinister work very differently. ...

How the body fights against viruses

22 hours ago

Scientists of the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna, together with colleagues of the ETH Zurich, have now shown how double stranded RNA, such as viral ...

User comments