Even without a concussion, blows to head may affect brain, learning and memory

December 11, 2013

New research suggests that even in the absence of a concussion, blows to the head during a single season of football or ice hockey may affect the brain's white matter and cognition, or memory and thinking abilities. The study is published in the December 11, 2013, online issue of Neurology, the medical journal of the American Academy of Neurology. White matter is brain tissue that plays an important role in the speed of nerve signals.

"We found differences in the white matter of the brain in these college contact sport athletes compared to non-contact sport varsity athletes," said study author Thomas W. McAllister, MD, of Indiana University School of Medicine in Indianapolis. "The degree of white matter change in the contact sport athletes was greater in those who performed more poorly than expected on tests of and learning, suggesting a possible link in some athletes between how hard/often they are hit, changes, and cognition, or memory and thinking abilities."

The work was completed while McAllister was with the Geisel School of Medicine at Dartmouth in Hanover, NH.

The study involved 80 concussion-free Division I NCAA Dartmouth College varsity football and players who wore helmets that recorded the acceleration-time of the head following impact. They were compared to 79 non-contact sport athletes in activities such as track, crew and Nordic skiing. The players were assessed before and shortly after the season with brain scans and learning and memory tests.

This video is not supported by your browser at this time.
Repeated blows to the head during a season of contact sports may cause changes in the brain's white matter and affect cognitive abilities even if none of the impacts resulted in a concussion, according to a study published in the journal Neurology. Credit: Indiana University

The study found that a subgroup of both types of athletes performed worse than predicted on a test of verbal learning and memory at the end of the season. A total of 20 percent of the contact players and 11 percent of the non-contact athletes scored more than 1.5 standard deviations below the predicted score. McAllister said a decline this large would have been expected in less than seven percent of a normal population. This subgroup showed more change in the corpus callosum region of the brain than the athletes who scored as predicted on the test. The corpus callosum is a bundle of nerves that connects the right and left sides of the brain.

"This group of athletes with different susceptibility to repetitive head impacts raises the question of what underlying factors might account for the changes in learning and memory, and whether those effects are long-term or short-lived," said McAllister.

Explore further: Study finds head impacts in contact sports may reduce learning in college athletes

Related Stories

Can playing soccer lead to brain damage?

November 13, 2012

(HealthDay)—Soccer is an extremely popular team sport, and one of the few that doesn't require any protective head gear. But, a small study of professional soccer players from Germany suggests that even in players without ...

NFL players may be at higher risk for depression as they age

January 16, 2013

National Football League (NFL) players may be at increased risk of depression as they age due to brain damage resulting from concussions, according to two studies released today that will be presented at the American Academy ...

U of A research leads to enhanced CFL concussion guidelines

June 5, 2013

Research from the University of Alberta shows CFL players are more likely to value medical tests after concussions compared to university-level players. But the professional athletes were more apt to incorrectly believe it's ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.