Gene-silencing data now publicly available to help scientists better understand disease

For the first time, large-scale information on the biochemical makeup of small interfering RNA (siRNA) molecules is available publicly. These molecules are used in research to help scientists better understand how genes function in disease. Making these data accessible to researchers worldwide increases the potential of finding new treatments for patients.

NIH's National Center for Advancing Translational Sciences (NCATS) collaborated with Life Technologies Corporation of Carlsbad, Calif., which owns the siRNA information, to make it available to all researchers.

The siRNA molecules, which can selectively inhibit the activity of genes, are used in RNA interference (RNAi) research. RNAi is a natural process that cells use to control the activity of specific genes. Its discovery led to the 2006 Nobel Prize in Physiology or Medicine.

Last month, a team of NIH scientists, led by Richard Youle, Ph.D., at the National Institute of Neurological Disorders and Stroke (NINDS), and Scott Martin, Ph.D., at NCATS, used RNAi to find genes that linked to Parkinson's disease, a devastating movement disorder. The new genes may represent new starting points for developing treatments. The study results were published online in the Nov. 24, 2013, issue of Nature.

Scientists have harnessed the power of RNAi to study the function of many individual genes by reducing their activity levels, or silencing them. This process enables researchers to identify genes and molecules that are linked to particular diseases. To do this, researchers use siRNAs, which are RNA molecules that have a complementary chemical makeup, or sequence, to that of a targeted gene. While the gene is silenced, researchers look for changes in cell functions to gain insights about what it normally does. By silencing genes in the cell one at a time, scientists can explore and understand their complex relation to other genes in the context of disease.

Until now, a major limitation in the scientific community's use of RNAi data has been the lack of a publicly available dataset, along with siRNA sequences directed against every human gene. Historically, providers have not allowed publishing of proprietary siRNA sequence information. To address this problem, NCATS and Life Technologies are providing all researchers with access to siRNA data from Life Technologies' Silencer Select siRNA library, which includes 65,000 siRNA sequences targeting more than 20,000 human . Simultaneously, NCATS is releasing complementary data on the effects of each siRNA molecule on biological functions. All of this information is available to the public free-of-charge through NIH's public database PubChem.

"Producing and releasing these data demonstrate NCATS' commitment to speeding the translational process for all diseases," said NCATS Director Christopher P. Austin, M.D. "The Human Genome Project showed that public data release is critical to scientific progress. Similarly, I believe that making RNAi data publicly available will revolutionize the study of biology and medicine."

Experts from the NIH RNAi initiative, administered by NCATS' Division of Pre-Clinical Innovation, conduct screens for NIH investigators. They will add new RNAi data into PubChem on an ongoing basis, making the database a growing resource for gene function studies.

"By releasing all our siRNA sequences, we are enabling novel strategies to advance fundamental understanding of biology and discovery of new potential drug targets," said Mark Stevenson, president and chief operating officer of Life Technologies.

NIH invites other companies that sell siRNA libraries and researchers who conduct genome-wide RNAi screens with the Life Technologies library to deposit sequence data and biological activity information into PubChem.

"Translation of siRNA library screening results into impactful downstream experiments is the ultimate goal of scientists using our library," said Alan Sachs, M.D., Ph.D., head of global research and development for Life Technologies. "The availability of these sequence data should greatly facilitate this effort because scientists no longer will be blinded to the actual sequence they are targeting."

add to favorites email to friend print save as pdf

Related Stories

Synthetic RNAs designed to fight cancer

Dec 06, 2013

(Medical Xpress)—In search of better cancer treatments, researchers at Washington University School of Medicine in St. Louis have designed synthetic molecules that combine the advantages of two experimental ...

Novel nanoparticle delivers powerful RNA interference drugs

Jul 09, 2013

Silencing genes that have malfunctioned is an important approach for treating diseases such as cancer and heart disease. One effective approach is to deliver drugs made from small molecules of ribonucleic acid, or RNA, which ...

RNA interference for human therapy

Sep 20, 2012

Leading scientists in the field investigated the potential of RNA interference (RNAi) technology as a therapeutic intervention for down-regulating the expression of disease-associated genes. Project deliverables ...

Double whammy: RNAi enhances lung cancer therapy

Mar 20, 2012

Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is usually treated with surgery and chemotherapy. However, a small group of patients can also be helped by treatment with tyrosine kinase inhibitors ...

Recommended for you

New research software automates DNA analysis

Oct 20, 2014

At the core of medical research is problem-solving, which is exactly what two PhD scientists did when they set out to eliminate a common, time-consuming task performed in research laboratories around the world.

User comments