Researcher to grow human cells in space to test treatment for stroke

Abba Zubair, M.D., Ph.D, believes that cells grown in the International Space Station (ISS) could help patients recover from a stroke, and that it may even be possible to generate human tissues and organs in space. He just needs a chance to demonstrate the possibility.

He now has it. The Center for the Advancement of Science in Space (CASIS), a that promotes research aboard the ISS, has awarded Dr. Zubair a $300,000 grant to send human stem cells into space to see if they grow more rapidly than stem cells grown on Earth.

Dr. Zubair, medical and scientific director of the Cell Therapy Laboratory at Mayo Clinic in Florida, says the experiment will be the first one Mayo Clinic has conducted in space and the first to use these human stem cells, which are found in bone marrow.

"On Earth, we face many challenges in trying to grow enough stem cells to treat patients," he says. "It now takes a month to generate enough cells for a few patients. A clinical-grade laboratory in space could provide the answer we all have been seeking for regenerative medicine."

He specifically wants to expand the population of stem cells that will induce regeneration of neurons and blood vessels in patients who have suffered a , the kind of stroke which is caused by blood clot. Dr. Zubair already grows such cells in his Mayo Clinic laboratory using a large tissue culture and several incubators—but only at a snail's pace.

Experiments on Earth using microgravity have shown that —the that produce all organ and tissue cell types—will grow faster, compared to conventionally grown cells.

"If you have a ready supply of these cells, you can treat almost any condition, and can theoretically regenerate entire organs using a scaffold," Dr. Zubair says. "Additionally, they don't need to come from individual patients—anyone can use them without rejection."

Dr. Zubair is working with engineers at the University of Colorado who are building the specialized cell bioreactor that will be taken to the ISS within a year for the experiment.

"I don't really think growing cells in space for clinical use on Earth is science fiction," he says. "Commercial flights to the ISS will start soon, and the cost of traveling there is coming down. We just need to show what can be achieved in space, and this award from CASIS helps us do that."

add to favorites email to friend print save as pdf

Related Stories

NASA preps for space-based stem cell research

Dec 09, 2013

NASA and the Center for the Advancement of Science in Space (CASIS) are enabling research aboard the International Space Station that could lead to new stem cell-based therapies for medical conditions faced on Earth and in ...

How prostate cancer cells evolve

Dec 04, 2013

(Medical Xpress)—UCLA researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies. 

Stem cells could set up future transplant therapies

Oct 31, 2013

(Medical Xpress)—Scientists have developed a new method for creating stem cells for the human liver and pancreas. This method could enable both cell types to be grown in sufficient quantities for clinical ...

New way to weed out problem stem cells, making therapy safer

Sep 27, 2012

Mayo Clinic researchers have found a way to detect and eliminate potentially troublemaking stem cells to make stem cell therapy safer. Induced Pluripotent Stem cells, also known as iPS cells, are bioengineered from adult ...

Recommended for you

Better living through mitochondrial derived vesicles

15 hours ago

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

16 hours ago

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

19 hours ago

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments