MRI method for measuring MS progression validated

December 19, 2013

New imaging research from Western University (London, Canada) has demonstrated that a magnetic resonance imaging (MRI) approach called quantitative susceptibility mapping (QSM) can be an important tool for diagnosing and tracking the progression of Multiple Sclerosis (MS) and other neurological diseases. QSM provides a quantitative way to measure myelin content and iron deposition in the brain -important factors in the physiology of MS. The research led by Ravi Menon, PhD, a scientist at Western's Robarts Research Institute, is published in this week's Proceedings of the National Academy of Sciences (PNAS).

Menon and his associates including first author David Rudko, set out to determine whether QSM was indeed quantitative. Interpretation of QSM data requires the use of a model of the underlying tissue structure. The scientists found that the most common approach to creating QSM images was in fact insufficient to generate quantitative images – that is in which myelin content and iron can be measured. They demonstrated this by exploring the orientation dependence of the MRI signal. This particular signal has generally thought to be a constant, but the team showed that it depends on tissue orientation in both cortical grey and , but not in the deep brain structures such as the basal ganglia. All these areas are implicated in MS.

They demonstrated the discordance between the models for QSM using a device that rotated a rat's brain so that it could be scanned from 18 different angles, using a 9.4 T MRI. The brains were then sent to histology for comparison. They found the values depended on the microstructure of the brain such as myelin concentration and integrity, and iron deposition. The study also showed, for the first time, the correlation between MRI measurement and histology measurement when the correct model was used.

"With this methodology, we now have a quantitative way to interpret myelin and iron concentrations, and in particular, any changes to them over time," says Menon, who holds a Canada Research Chair in Functional Magnetic Resonance Imaging. "We've been doing these scans on MS patients for a while, but nobody knew if it was a valid approach or not. We now know how to interpret the data. It allows us to separate changes in white matter degeneration, from other changes such as iron deposition, which in conventional imaging all looks the same."

Menon says the next step is to use this new imaging approach to study the changes that occur in MS and to find out if it is predictive of disease progression.

Explore further: MRI research sheds new light on nerve fibers in the brain

Related Stories

MRI research sheds new light on nerve fibers in the brain

November 2, 2012

World-leading experts in Magnetic Resonance Imaging from The University of Nottingham's Sir Peter Mansfield Magnetic Resonance Centre have made a key discovery which could give the medical world a new tool for the improved ...

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.