Musical brain-reading sheds light on neural processing of music

December 17, 2013

Finnish and Danish researchers have developed a new method that performs decoding, or brain-reading, during continuous listening to real music. Based on recorded brain responses, the method predicts how certain features related to tone color and rhythm of the music change over time, and recognizes which piece of music is being listened to. The method also allows pinpointing the areas in the brain that are most crucial for the processing of music. The study was published in the journal NeuroImage.

Using functional magnetic resonance imaging (fMRI), the research team at the Finnish Centre of Excellence in Interdisciplinary Music Research in the Universities of Jyväskylä and Helsinki, and the Center for Functionally Integrative Neuroscience in Aarhus University, Denmark, recorded the of participants while they were listening to a 16-minute excerpt of the album Abbey Road by the Beatles. Following this, they used computational algorithms to extract a collection of musical features from the musical recording. Subsequently, they employed a collection of machine-learning methods to train a computer model that predicts how the features of the change over time. Finally, they develop a classifier that predicts which part of the music the participant was listening to at each time.

The researchers found that most of the musical features included in the study could be reliably predicted from the brain data. They also found that the piece being listened to could be predicted significantly better than chance. Fairly large differences were however found between participants in terms of the prediction accuracy. An interesting finding was that areas outside of the auditory cortex, including motor, limbic, and frontal areas, had to be included in the models to obtain reliable predictions, providing thus evidence for the important role of these areas in the processing of musical features.

"We believe that decoding provides a method that complements other existing methods to obtain more reliable information about the complex processing of music in the ", says Prof. Petri Toiviainen from the University of Jyväskylä. "Our results provide additional evidence for the important involvement of emotional and motor areas in music processing."

More information: Toiviainen, P., Alluri, V., Brattico, E., Wallentin, M., & Vuust, P. (2013). "Capturing the musical brain with Lasso: dynamic decoding of musical features from fMRI data." Neuroimage. DOI: 10.1016/j.neuroimage.2013.11.017

Related Stories

This is your brain on Vivaldi and Beatles

August 7, 2013

Listening to music activates large networks in the brain, but different kinds of music are processed differently. A team of researchers from Finland, Denmark and the UK has developed a new method for studying music processing ...

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.