Neural prosthesis restores brain function after injury (w/ Video)

Scientists from Case Western Reserve University and University of Kansas Medical Center have restored behavior—in this case, the ability to reach through a narrow opening and grasp food—using a neural prosthesis in a rat model of brain injury.

Ultimately, the team hopes to develop a device that rapidly and substantially improves function after injury in humans. There is no such commercial treatment for the 1.5 million Americans, including soldiers in Afghanistan and Iraq, who suffer traumatic brain injuries (TBI), or the nearly 800,000 stroke victims who suffer weakness or paralysis in the United States, annually.

The prosthesis, called a brain-machine-brain interface, is a closed-loop microelectronic system. It records signals from one part of the brain, processes them in real time, and then bridges the injury by stimulating a second part of the brain that had lost connectivity.

Their work is published online this week in the science journal Proceedings of the National Academy of Sciences.

"If you use the device to couple activity from one part of the brain to another, is it possible to induce recovery from TBI? That's the core of this investigation," said Pedram Mohseni, professor of electrical engineering and computer science at Case Western Reserve, who built the brain prosthesis.

This video is not supported by your browser at this time.
Credit: Case Western Reserve University

"We found that, yes, it is possible to use a closed-loop neural prosthesis to facilitate repair of a brain injury," he said.

The researchers tested the prosthesis in a of in the laboratory of Randolph J. Nudo, professor of molecular and integrative physiology at the University of Kansas. Nudo mapped the rat's brain and developed the model in which anterior and posterior parts of the brain that control the rat's forelimbs are disconnected.

Atop each animal's head, the brain-machine-brain interface is a microchip on a circuit board smaller than a quarter connected to microelectrodes implanted in the two brain regions.

The device amplifies signals, which are called neural action potentials and produced by the neurons in the anterior of the brain. An algorithm separates these signals, recorded as brain spike activity, from noise and other artifacts. With each spike detected, the microchip sends a pulse of electric current to stimulate neurons in the posterior part of the brain, artificially connecting the two .

This video is not supported by your browser at this time.
Credit: Case Western Reserve University

Two weeks after the prosthesis had been implanted and run continuously, the rat models using the full closed-loop system had recovered nearly all function lost due to injury, successfully retrieving a food pellet close to 70 percent of the time, or as well as normal, uninjured rats. Rat models that received random stimuli from the device retrieved less than half the pellets and those that received no stimuli retrieved about a quarter of them.

"A question still to be answered is must the implant be left in place for life?" Mohseni said. "Or can it be removed after two months or six months, if and when new connections have been formed in the brain?"

Brain studies have shown that, during periods of growth, neurons that regularly communicate with each other develop and solidify connections.

Mohseni and Nudo said they need more systematic studies to determine what happens in the brain that leads to restoration of function. They also want to determine if there is an optimal time window after injury in which they must implant the device in order to restore function.

More information: "Restoration of function after brain damage using a neural prosthesis," by David J. Guggenmos et al. www.pnas.org/cgi/doi/10.1073/pnas.1316885110

Related Stories

Rewiring a damaged brain

date Sep 27, 2010

Researchers in the Midwest are developing microelectronic circuitry to guide the growth of axons in a brain damaged by an exploding bomb, car crash or stroke. The goal is to rewire the brain connectivity and bypass the region ...

Brain implant aims to stifle drug highs

date Jul 29, 2013

What happens if addicts get no high from the drugs they take? Researchers at Case Western Reserve and Illinois State universities have received a $390,000 National Institute on Drug Abuse grant to help answer the question.

Recommended for you

Unlearning implicit social biases during sleep

date 29 minutes ago

Can we learn to rid ourselves of our implicit biases regarding race and gender? A new Northwestern University study indicates that sleep may hold an important key to success in such efforts.

Deciphering dark and bright

date 29 minutes ago

The human sensory systems contend with enormous diversity in the natural world. But it has been known for a long time the brain is adapted to exploit statistical regularities that nonetheless arise amongst this diversity. ...

How we make emotional decisions

date 2 hours ago

Some decisions arouse far more anxiety than others. Among the most anxiety-provoking are those that involve options with both positive and negative elements, such choosing to take a higher-paying job in a ...

Can we cure Huntington's disease?

date 4 hours ago

I didn't cry until page 123 of Lisa Genova's terrific new novel Inside the O'Briens. That's when 44-year-old Boston police officer Joe O'Brien tells his four young adult offspring that his "weird temper"; ...

Poor diet can cause Alzheimer's or Parkinson's in rats

date 5 hours ago

For several years, a researcher fed rodents in his laboratory a high caloric diet with glucose concentrations, which resulted in diabetes. By scientifically assessing what occurred in rats, Samuel Treviño ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

semmsterr
Dec 10, 2013
Could the technique be used to enhance normal brain function?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.