Nutrition influences metabolism through circadian rhythms

A high-fat diet affects the molecular mechanism controlling the internal body clock that regulates metabolic functions in the liver, UC Irvine scientists have found. Disruption of these circadian rhythms may contribute to metabolic distress ailments, such as diabetes, obesity and high blood pressure.

There's good news, though. The researchers also discovered that returning to a balanced, low-fat diet normalized the rhythms. This study reveals that the circadian clock is able to reprogram itself depending on a diet's nutritional content – which could lead to the identification of novel pharmacological targets for controlled diets.

UC Irvine's Paolo Sassone-Corsi, the Donald Bren Professor of Biological Chemistry and one of the world's leading researchers on the genetics of , led the study, which appears in Cell.

Circadian rhythms of 24 hours govern fundamental physiological functions in virtually all organisms. The circadian clocks are intrinsic time-tracking systems in our bodies that anticipate environmental changes and adapt themselves to the appropriate time of day. Changes to these rhythms can profoundly influence human health. Up to 15 percent of people's genes are regulated by the day-night pattern of circadian rhythms, including those involved with metabolic pathways in the liver.

A high-fat diet reprograms the liver clock through two main mechanisms. One blocks normal cycles by impeding the clock regulator genes called CLOCK:BMAL1. The other initiates a new program of oscillations by activating genes that normally do not oscillate, principally through a factor called PPAR-gamma. Previously implicated in inflammatory responses and the formation of fatty tissue, this factor oscillates with a high-fat diet.

It's noteworthy, Sassone-Corsi said, that this reprogramming takes place independent of the state of obesity; rather, it's solely dependent upon caloric intake – showing the remarkable adaptability of the .

The authors will extend their research to the effects of a high-fat diet on other body components, including muscle, fat, the brain and blood plasma.

Related Stories

Internal body clock controls fat metabolism, study shows

Nov 15, 2010

UC Irvine researchers have discovered that circadian rhythms – the internal body clock – regulate fat metabolism. This helps explain why people burn fat more efficiently at certain times of day and could lead to ...

Circadian rhythm-metabolism link discovered

Jul 24, 2008

UC Irvine researchers have found a molecular link between circadian rhythms – our own body clock – and metabolism. The discovery reveals new possibilities for the treatment of diabetes, obesity and other ...

Recommended for you

Infant cooing, babbling linked to hearing ability

3 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

4 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

8 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

10 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments