Parasitic DNA proliferates in aging tissues

This shows Brown University researchers studying the biology of aging have found that over time, mouse cells loosened control over parasitic "retrotransposable elements" in the genome. Credit: John Sedivy/Brown University

The genomes of organisms from humans to corn are replete with "parasitic" strands of DNA that, when not suppressed, copy themselves and spread throughout the genome, potentially affecting health. Earlier this year Brown University researchers found that these "retrotransposable elements" were increasingly able to break free of the genome's control in cultures of human cells. Now in a new paper in the journal Aging, they show that RTEs are increasingly able to break free and copy themselves in the tissues of mice as the animals aged. In further experiments the biologists showed that this activity was readily apparent in cancerous tumors, but that it also could be reduced by restricting calories.

"As mice we are seeing deregulation of these elements and they begin to be expressed and increase in copy number in the genome," said Jill Kreiling, a research assistant professor at Brown, and leader of the study published in advance online Dec. 7. "This may be a very important mechanism in leading to genome instability. A lot of the chronic diseases associated with aging, such as cancer, have been associated with genome instability."

Whether the proliferation of RTEs is exclusively a bad thing remains a hot question among scientists, but what they do know is that the genome tries to control RTEs by wrapping them up in a tightly wound configuration called heterochromatin. In their experiments, Kreiling and co-corresponding author Professor John Sedivy found that overall, the genomes of several mouse tissues become more heterochromatic with age. But they also found, paradoxically, that some regions where RTEs are concentrated became - loosened up instead , particularly after mice reached the 2-year mark (equivalent to about the 70-year mark for a person).

An important advance in this paper compared to the prior work in cell cultures, Sedivy said, is that the researchers were able to show the loosening of control over RTEs was associated with the chronological aging of the whole organism and specific tissues. Before in cell culture the aging they tracked was based on the number of times individual cells were able to divide. That kind of cellular aging is called "replicative senescence" and is believed to be rare in many normal tissues.

"This brings home the magnitude of the problem," Sedivy said. "We looked in some pretty major tissues. This appears to be a much more widespread phenomenon. The observation that RTEs become activated with chronological aging of mouse tissues also brings this research in close alignment with very similar discoveries using the fruit fly Drosophila in the labs of Brown Professors Stephen Helfand and Robert Reenan,. The remarkable evolutionary conservation of these fundamental molecular processes indicates that they are likely important aspects of aging. "

In the new research, the team including lead author Marco DeCecco looked at cells from the liver and skeletal muscle of mice at ages 5, 24 and 36 months. Comparing gene expression and DNA sequences from the cells, they found elevated expression in both tissues of many RTEs after 24 months. Not only were the RTEs expressed more, but also they succeeded in copying themselves and showing up elsewhere in the genome. For example, an RTE named "MusD" became more than twice as abundant in liver tissue between the ages 24 and 36 months.

The RTEs were considerably less successful in proliferating, however, in mice who were still adequately nourished, but fed 40 percent fewer calories than mice fed a standard diet. Calorie restriction has been widely shown to mitigate many consequences of aging in different animal models.

On the other hand, the researchers found that several RTEs were much more abundant in mouse tissues affected by naturally occurring cancers, such as lymphoma and hepatocellular carcinoma.

The research does not yet provide evidence that RTEs have a causal role in cancer, Sedivy said. For the time being it's only an association. But he said that researchers have a path forward to study the health consequences of the RTE proliferation that apparently occurs in aging. Certain drugs can inhibit RTE proliferation so researchers should be able to see if doing so extends the amount of time an animal is healthy and free of chronic disease in future mouse experiments.

Related Stories

Aging erodes genetic control, but that's flexible

Nov 20, 2013

Biologists at Brown University have found a way to measure the effects of aging by watching the ebb and flow of chromatin, a structure along strands of DNA that either silences or permits gene expression. ...

Linking risk factors and disease origins in breast cancer

Nov 20, 2013

Researchers from the Geisel School of Medicine at Dartmouth have found that epigenetic changes to DNA are associated with aging in disease-free breast tissues and are further altered in breast tumors. Epigenetic changes describe ...

Aging cells unravel their DNA

Dec 16, 2013

Senescent cells, which are metabolically active but no longer capable of dividing, contribute to aging, and senescence is a key mechanism for preventing the spread of cancer cells. A study in The Journal of ...

Scientists report interplay between cancer and aging in mice

Apr 05, 2011

Cancer risk increases with age, and scientists have long perceived a possible evolutionary tradeoff between longer lifespan and greater risk of cancer. Now, researchers at Fox Chase Cancer Center find direct evidence for ...

Aging cells lose their grip on DNA rogues

Jan 30, 2013

(Phys.org)—Transposable elements are mobile strands of DNA that insert themselves into chromosomes with mostly harmful consequences. Cells try to keep them locked down, but in a new study, Brown University ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments