Activating pathway could restart hair growth in dormant hair follicles

A pathway known for its role in regulating adult stem cells has been shown to be important for hair follicle proliferation, but contrary to previous studies, is not required within hair follicle stem cells for their survival, according to researchers with the Perelman School of Medicine at the University of Pennsylvania. A new study, published in Cell Stem Cell, identifies a molecular pathway that can be activated to prompt hair growth of dormant hair follicles, or blocked to prevent growth of unwanted hair.

The team examined the functions of Wnt proteins, which are small molecular messengers that convey information between cells and activate signaling via the intracellular molecule β-catenin. By disrupting Wnt signaling in an animal model with an inhibitor Dkk1, the team found that hair growth was prevented. However, stem cells were still maintained within the dormant hair follicles. When Dkk1 was removed, the Wnt/β-catenin pathway resumed normal function, the were activated, and hair growth was restored.

The team also unexpectedly found that the Wnt/β-catenin pathway is normally active in non-hairy regions, such as on the palms of hands, soles of feet and the tongue, as well as between hair follicles on the surface of the skin. This finding is consistent with previous results showing that removing β-catenin prevents growth of .

"While more research is needed to improve our understanding of this pathway, our results suggest that therapeutics capable of decreasing levels of Wnt/β-catenin signaling in the skin could potentially be used to block growth of unwanted hair, and/or to treat certain skin tumors. Conversely, if delivered in a limited, safe and controlled way, agents that activate Wnt signaling might be used to promote in dormant hair follicles in conditions such as male pattern baldness," said senior author Sarah Millar, PhD, professor in the departments of Dermatology and of Cell and Developmental Biology.

Researchers aim to better understand the key components and functions of the Wnt/β-catenin pathway. Important areas of focus for future work will include developing effective means of safely targeting therapeutics to the skin for clinical and cosmetic applications.

Related Stories

New research provides clues on why hair turns gray

Jun 14, 2011

A new study by researchers at NYU Langone Medical Center has shown that, for the first time, Wnt signaling, already known to control many biological processes, between hair follicles and melanocyte stem cells can dictate ...

Hair-like constructs offer drug screening platform

Oct 23, 2013

Scientists from A*STAR have successfully engineered cellular structures resembling hair follicles in the laboratory—a tool that can now be used to develop new therapies to promote or decrease hair growth.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments