Changes in proteins may predict ALS progression

Measuring changes in certain proteins—called biomarkers—in people with amyotrophic lateral sclerosis may better predict the progression of the disease, according to scientists at Penn State College of Medicine.

ALS is often referred to as Lou Gehrig's disease, is a neurological disease in which the brain loses its ability to control movement as motor neurons degenerate. The course of the disease varies, with survival ranging from months to decades.

"The cause of most cases of ALS remains unknown," said James Connor, Distinguished Professor of Neurosurgery, Neural and Behavioral Sciences and Pediatrics. "Although several genetic and environmental factors have been identified, each accounts for only a fraction of the total cases of ALS."

This clinical variation in patients presents challenges in terms of managing the disease and developing new treatments. Finding relevant biomarkers, which are objective measures that reflect changes in biological processes or reactions to treatments, may help address these challenges.

The project was led by Xaiowei Su, an M.D./ Ph.D. student in Connor's laboratory, in collaboration with Zachary Simmons, director of the Penn State Hershey ALS Clinic and Research Center. Su studied plasma and samples previously collected from patients undergoing diagnostic evaluation, who were later identified as having ALS. Analysis shows that looking at multiple biomarkers to predict progression is not only mathematically possible, it improves upon methods using single biomarkers.

Statistical models analyzing plasma had reasonable ability to predict total disease duration and used seven relevant biomarkers. For example, higher levels of the protein IL-10 predict a longer disease duration. IL-10 is involved with anti-inflammation, suggesting that lower levels of inflammation are associated with a longer disease duration.

The researchers identified six biomarkers for cerebrospinal fluid. For example, higher levels of G-CSF—a growth factor known to have protective effects on , the cells that die in ALS—predicts a longer disease duration. Perhaps most importantly, the results suggest that a combination of biomarkers from both plasma and cerebrospinal fluid better predict disease duration.

While the size of this study is small, the ability of the specific biomarkers used to predict prognosis suggests that the approach holds promise.

"The results argue for the usefulness of researching this approach for ALS both in terms of predicting disease progression and in terms of determining the impact of therapeutic strategies," Connor said. "The results present a compelling starting point for the use of this method in larger studies and provide insights for novel therapeutic targets."

Related Stories

Spinal fluid proteins signal Lou Gehrig's disease

Jan 28, 2009

High levels of certain proteins in the spinal fluid could signal the onset of Lou Gehrig's disease, according to researchers. The discovery of these biomarkers may lead to diagnostic kits for early diagnosis, accurately measuring ...

Silent RNAs express themselves in ALS disease

Dec 02, 2013

RNA molecules, used by cells to make proteins, are generally thought to be "silent" when stowed in cytoplasmic granules. But a protein mutated in some ALS patients forms granules that permit translation of ...

Recommended for you

New ALS associated gene identified using innovative strategy

10 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

11 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

11 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

15 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

15 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments