Stem cell scientists first to track joint cartilage development in humans

December 13, 2013 by Shaun Mason

(Medical Xpress)—Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and damage from osteoarthritis.

Such transformative therapies could reach clinical trials within three years, said the scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The study, led by Dr. Denis Evseenko, an assistant professor of orthopedic surgery and head of UCLA's Laboratory of Connective Tissue Regeneration, was published online Dec. 12 in the journal Stem Cell Reports and will appear in a forthcoming print edition.

Articular cartilage, a highly specialized tissue formed from called chondrocytes, protects the bones of joints from forces associated with load-bearing and impact and allows nearly frictionless motion between the articular surfaces—the areas where bone connects with other bones in a joint.

Cartilage injury and a lack of cartilage regeneration often lead to osteoarthritis, which involves the degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the U.S., making joint-surface restoration a major priority in modern medicine.

While scientists have studied the ability of different cell types to generate , none of the current cell-based repair strategies—including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid—have generated long-lasting articular cartilage tissue in the laboratory.

For the current study, Evseenko and his colleagues used complex molecular biology techniques to determine which cells grown from embryonic , which can become any cell type in the body, were the progenitors of cartilage cells, or chondrocytes. They then tested and confirmed the growth of these progenitor cells into cartilage cells and monitored their growth progress, observing and recording important genetic features, or landmarks, that indicated the growth stages of these cells as they developed into the cartilage cells.

By bridging developmental biology and tissue engineering, Evseenko's discoveries represent a critical "missing link," providing scientists with checkpoints to tell if the are developing correctly.

"We began with three questions about cartilage development," Evseenko said. "We wanted to know the key molecular mechanisms, the key cell populations and the developmental stages in humans. We carefully studied how the chondrocytes developed, watching not only their genes but other biological markers that will allow us to apply the system for the improvement of current stem cell–based therapeutic approaches."

The research was also the first to employ the highest animal-free standards in attempting to generate all the key landmarks that allow the development of cell types that could be used in treatments to regrow damaged human cartilage. Stem cells are often grown using animal-based components, which help the stem cells flourish and grow, but such components can lead to unwanted variations and contamination. Evseenko's research process did not rely on any animal components, thus allowing for the potential production of therapies, such as stem cell serums, that are safe for humans.

Evseenko noted that in a living organism, more than one cell type is responsible for the complete regeneration of tissue, so in addition to the studies involving the generation of articular cartilage from human stem cells, he and his team are trying different protocols using various combinations of adult progenitor cells present in the joint to regenerate cartilage until the best one is found for therapeutic use.

With the and the landmarks of proper cartilage development identified, Evseenko believes that an effective cellular therapy for diseased or damaged could be tested in human trials within three years. Such stem cell–based therapies could make many current knee and hip replacement surgeries unnecessary, offering patients the ability to regrow lost , keep their bones intact and avoid the discomfort and risk of major joint-replacement surgery.

Explore further: Repairing cartilage with fat: Problems and potential solutions

More information: Read the full report: download.cell.com/stem-cell-reports/pdf/PIIS2213671113001240.pdf?intermediate=true

Related Stories

Researchers engineer cartilage from pluripotent stem cells

October 29, 2012

A team of Duke Medicine researchers has engineered cartilage from induced pluripotent stem cells that were successfully grown and sorted for use in tissue repair and studies into cartilage injury and osteoarthritis.

Better cartilage repairs using stem cells

March 21, 2013

Using adult stem cells is a good way of culturing better-quality cartilage to repair worn hips and knees. New cartilage that has good properties can be grown in particular by cultivating adult stem cells in combination with ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Dec 13, 2013
Were they using ESCs OR Not?
Afraid of gAd, eh?
betterexists
not rated yet Dec 13, 2013
gAd gives E.Quakes, Tornadoes, Floods etc.,
Just RIP APART ESCs
IDIOTS ARE using Drones & Killing Civilians.

This is a Scientific Website; So, Limiting the Insult hurling!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.