Amplifying communication between neurons

January 17, 2014
Figure 1: Synaptic signaling occurs when neurotransmitter molecules (glutamate) released by the presynaptic neuron travel through the synaptic cleft to activate glutamate receptors, including NMDA receptors, on the postsynaptic neuron. Credit: National Institute on Aging

Neurons send signals to each other across small junctions called synapses. Some of these signals involve the flow of potassium, calcium and sodium ions through channel proteins that are embedded within the membranes of neurons. However, it was unclear whether the flow of potassium ions into the synaptic cleft had a physiological purpose. An international team of researchers including Alexey Semyanov from the RIKEN Brain Science Institute has now revealed that potassium ions that leak out of channel proteins and spill into the synapse augment synaptic signaling between neurons, potentially fulfilling a reinforcement mechanism in learning and memory.

Synaptic communication between begins when enter the axon terminal of one neuron—the presynaptic neuron—causing the release of neurotransmitter molecules, such as glutamate, which travel across the synaptic cleft and bind to receptor proteins on the surface of the receiving or postsynaptic neuron (Fig. 1). When the glutamate binds to a receptor known as the NMDA receptor, a channel in the receptor protein opens and calcium flows in, which initiates activation of the postsynaptic neuron.

Semyanov and his colleagues found that the opening of the NMDA receptor channel on the postsynaptic neuron also allows potassium ions to flow out of that neuron and into the synaptic cleft. Blocking the NMDA receptor prevented the rise in within the synaptic cleft.

The NMDA receptor is generally blocked by magnesium ions, but these ions can be released from the receptor channel upon repetitive stimulation of the postsynaptic neuron. Through mathematical modeling and subsequent experiments, Semyanov and his colleagues found that potassium levels in the synaptic cleft could increase dramatically on removal of magnesium or during repeated activation of the postsynaptic neuron.

The rise in potassium in the synaptic cleft was shown to increase calcium entry into the presynaptic neuron axon terminal when the postsynaptic neuron was stimulated, and enhanced the probability that the glutamate neurotransmitter would be released from the presynaptic neuron. In this way, repeated activation of a given neuronal network, such as during learning, could augment the strength of communication between neurons, making it more likely that a given stimulus would trigger the activation of postsynaptic neurons.

"New memories are associated with long-term changes in synaptic strength following repetitive activation of the synapse, commonly known as ," explains Semyanov. "Potassium accumulation and the consequent increase in probability of glutamate release can potentially aid the induction of synaptic plasticity, thus facilitating learning and memory," he says.

Explore further: Mimicking the brain, in silicon: New computer chip models how neurons communicate

More information: Shih, P.-Y., Savtchenko, L. P., Kamasawa, N., Dembitskaya, Y., McHugh, T. J., Rusakov, D. A., Shigemoto, R. & Semyanov, A. "Retrograde synaptic signaling mediated by K+ efflux through postsynaptic NMDA receptors." Cell Reports 5, 941–951 (2013). dx.doi.org/10.1016/j.celrep.2013.10.026

Related Stories

Biochemical mechanisms of memory

December 9, 2013

A discovery by a research team led by Ryohei Yasuda at the Max Planck Florida Institute for Neuroscience has significantly advanced basic understanding of biochemical mechanisms associated with how memories are formed.

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.