Bio-X researchers develop new technology to study hearing

by Cynthia Mckelvey

(Medical Xpress)—Much of what is known about sensory touch and hearing cells is based on indirect observation. Scientists know that these exceptionally tiny cells are sensitive to changes in force and pressure. But to truly understand how they function, scientists must be able to manipulate them directly.

Now, Stanford scientists are developing a set of tools that are small enough to stimulate an individual nerve or group of nerves, but also fast and flexible enough to mimic a realistic range of forces.

A team of Stanford ear specialists and mechanical engineers is developing a new device, known as a force probe, that allows the researchers to study the flexible hair cells that translate sound waves into electrical signals. The probe works at a range of frequencies that are more realistic to human hearing than previous machines.

Our ability to interpret sound is largely dependent on bundles of thousands of cells with hair-like projections on their surfaces. As sound waves vibrate the bundles, they force proteins in the cells' surfaces to open and allow electrically charged molecules, called ions, to flow into the cells. The ions stimulate each , allowing it to transfer information from the sound wave to the brain. Hair bundles are more sensitive to particular frequencies of sound, which allows us to tell the difference between a siren and a subwoofer.

People with damaged or congenital defects in these delicate hair cells suffer from severe, irreversible hearing loss. Scientists remain unsure how to treat this form of hearing loss because they do not know how to repair or replace a damaged hair cell. Physical manipulation of the cells is key to exploring the fine details of how they function. This new probe is the first tool nimble enough to do it.

Beth Pruitt, PhD, associate professor of mechanical engineering, and researchers in her lab have been working to develop electromechanical devices for use as high-speed force probes. The tool, developed with funding from Bio-X at Stanford, vibrates the hair cells to mimic the effect of incoming sound waves. This allows the researchers to study the cause-and-effect relationships between the forces exerted in hair cells by and the electrical signals they produce in response.

The new force probe represents several advantages over traditional glass force probes. At 300 nanometers thick, Pruitt's probe is just three-thousandths the width of a human hair. Made of flexible silicon, the probe can mimic a much wider range of sound wave frequencies than rigid glass probes, making it more practical for studying hearing. The probe also measures the force it exerts on hair cells as it pushes, a new achievement for high-speed force probes at such small sizes.

Manipulating the probe requires a gentle touch, said Pruitt's collaborator, Anthony Ricci, PhD, a professor of otolaryngology at the School of Medicine. The tissue samples—in this case, hair cells from a rat's ear—sit under a microscope on a stage that floats on a cushion of air to keep it isolated from vibrations.

The probe is controlled using three dials that function similarly to an Etch-a-Sketch. The first step of the experiment involves connecting a tiny, delicate glass electrode to the body of a single hair cell.

Using a similar manipulator, Ricci and his team then press the force probe on a single hair cell, and the glass electrode records the changes in the cell's electrical output. Pruitt and Ricci say that understanding how physical changes prompt electrical responses in hair cells can lead to a better understanding of how people lose their hearing following damage to the hair cells.

The force probe has the potential to catalyze future research on sensory science, Ricci said.

Up to now, limits in technology have held scientists back from understanding important functions such as hearing, touch and balance. Like hair cells in the ear, cells involved in touch and balance react to the flexing and stretching of their cell membranes. The force probe can be used to study those cells in the same manner that Pruitt and Ricci are using it to study hair cells.

Understanding the mechanics of how cells register these sensory inputs could lead to innovative new treatments and prosthetics. For example, Pruitt and Ricci think their research could someday help bioengineers develop a hair cell for people whose hearing is impaired from damage to their natural hair cells.

Their efforts to build the probe are funded by the Bio-X Interdisciplinary Initiatives Program, which provides money for interdisciplinary projects that have potential to improve human health in innovative ways.

"This project came about because collaborations are so open and available at Stanford. I'm not an engineer, so I couldn't design this myself. Beth is not a biologist, so she wouldn't have the applications for it," said Ricci, who is the Edward C. and Amy H. Sewall Professor of Otolaryngology. "But together we can take both of our strengths and put it together, and Stanford is an unusual place because it actually fosters that interaction."

More information: biox.stanford.edu/

add to favorites email to friend print save as pdf

Related Stories

Researchers develop new hearing test technology

Dec 04, 2013

Much of what is known about sensory touch and hearing cells is based on indirect observation. Scientists know that these exceptionally tiny cells are sensitive to changes in force and pressure. But to truly understand how ...

Recommended for you

The impact of bacteria in our guts

15 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

16 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

17 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments