Discovery may aid vaccine design for common form of malaria

A form of malaria common in India, Southeast Asia and South America attacks human red blood cells by clamping down on the cells with a pair of proteins, new research at Washington University School of Medicine in St. Louis has revealed.

The study provides details that will help scientists design better vaccines and drug treatments for the strain, Plasmodium vivax.

"More people live at risk of infection by this strain of than any other," said senior author Niraj Tolia, PhD, assistant professor of molecular microbiology and of biochemistry and molecular biophysics. "We now are using what we have learned to create vaccines tailored to stop the infectious process by preventing the parasite from attaching to red blood cells."

The finding appears Jan. 9 in PLOS Pathogens.

The World Health Organization estimates there were more than 200 million malaria cases in 2012. The deadliest form of malaria, Plasmodium falciparum, is most prevalent in Africa. But P. vivax can hide in the liver, re-emerging years later to trigger new infections, and is harder to prevent, diagnose and treat.

Earlier studies had suggested that one P. vivax protein binds to one protein on the surface of red blood cells. Tolia's new study reveals that the binding is a two-step process that involves two copies of a parasite protein coming together like tongs around two copies of a .

"It's a very intricate and chemically strong interaction that was not easily understood before," Tolia said. "We have had hints that other forms of malaria, including the African strain, may be binding in a similar fashion to host cells, but this is one of the first definitive proofs of this kind of attack."

Tolia suspects blocking any of the proteins with drugs or vaccines will stop the infectious process.

"For example, some people have a mutation that eliminates the protein on surfaces that P. vivax binds to, and they tend to be resistant to the parasite," he said. "This is why this strain isn't prevalent in Africa—evolutionary pressure has caused most of the populations there to stop making this protein."

Tolia also found evidence that other people with immunity to P. vivax have developed naturally occurring antibodies that attach to a key part of the parasite's binding protein, preventing infection.

"The parasite protein is very large, and human antibodies bind to it at many different points along its length," Tolia explained. "We have observed that the ones that are most effective so far are the antibodies that bind to the at the region highlighted by our new research."

More information: Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Heinzler-Wildman KA, Tolia NH. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLOS Pathogens, online Jan. 9, 2014.

Related Stories

Vivax malaria may be evolving around natural defense

date Nov 15, 2013

Researchers at Case Western Reserve University and Cleveland Clinic Lerner Research Institute have discovered recent genetic mutations in a parasite that causes over 100 million cases of malaria annually—changes that may ...

Recommended for you

How proteins evolved the capacity for movement within cells

date 19 hours ago

The process behind how the molecular components of living organisms start to move has been explained for the first time in new research published by Science and it is an intricate set of dance steps where the tempo is set ...

How do neural cells respond to ischemia?

date 20 hours ago

A group of researchers from the Lomonosov Moscow State University, in collaboration with their Irish colleagues from the University College Cork, has studied the early response of cells to ischemia, which ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.