In dyslexia, less brain tissue not to blame for reading difficulties

January 14, 2014

In people with dyslexia, less gray matter in the brain has been linked to reading disabilities, but now new evidence suggests this is a consequence of poorer reading experiences and not the root cause of the disorder.

It has been assumed that the difference in the amount of gray matter might, in part, explain why dyslexic children have difficulties correctly and fluently mapping the sounds in words to their written counterparts during reading. But this assumption of causality has now been turned on its head.

The findings from anatomical brain studies conducted at Georgetown University Medical Center (GUMC) in the Center for the Study of Learning led by neuroscientist Guinevere Eden, DPhil, were published online today in The Journal of Neuroscience.

The study compared a group of dyslexic children with two different control groups: an age-matched group included in most previous studies, and a group of younger children who were matched at the same reading level as the children with dyslexia.

"This kind of approach allows us to control for both age as well as reading experience," explains Eden, a professor of pediatrics at GUMC. "If the differences in brain anatomy in dyslexia were seen in comparison with both control groups, it would have suggested that reduced gray matter reflects an underlying cause of the reading deficit. But that's not what we observed."

The dyslexic groups showed less compared with a control group matched by age, consistent with previous findings. However, the result was not replicated when a control group matched by reading level was used as the comparison group with the dyslexics.

"This suggests that the anatomical differences reported in left hemisphere language processing regions appear to be a consequence of reading experience as opposed to a cause of dyslexia," says Anthony Krafnick, PhD, lead author of the publication. "These results have an impact on how we interpret the previous anatomical literature on dyslexia and it suggests the use of anatomical MRI would not be a suitable way to identify children with ," he says.

The work also helps to determine the fine line between experience-induced changes in the brain and differences that are the cause of cognitive impairment. For example, it is known from studies in illiterate people who attain reading skills as adults that this type of learning induces growth of brain matter. Similar learning-induced changes in typical readers may result in discrepancies between them and their dyslexic peers, who have not enjoyed the same reading experiences and thus have not undergone similar changes in structure.

Explore further: Brain anatomy of dyslexia is not the same in men and women, boys and girls

Related Stories

Brain study aims to improve dyslexia treatment

July 25, 2013

Neuroscientist Sarah Laszlo wants to understand what's going on in children's brains when they're reading. Her research may untangle some of the mysteries surrounding dyslexia and lead to new methods of treating America's ...

Brain scans may help diagnose dyslexia

August 13, 2013

About 10 percent of the U.S. population suffers from dyslexia, a condition that makes learning to read difficult. Dyslexia is usually diagnosed around second grade, but the results of a new study from MIT could help identify ...

Naming tests: A study on dyslexic versus average children

December 18, 2013

In an article by Zoccolotti, De Luca, Lami et al, published in Child Neuropsychology, Rapid Automized Naming (RAN) tests were conducted on 43 average children and 25 with developmental dyslexia. The task involved naming ...

Recommended for you

Action recognition without mirror neurons

April 29, 2016

When someone stands opposite us and purposefully raises their arm to make some kind of movement, our brain asks itself whether they intend to attack us or, perhaps, simply greet us. Scientists from the Department of Human ...

Subtle chemical changes in brain can alter sleep-wake cycle

April 28, 2016

A study out today in the journal Science sheds new light on the biological mechanisms that control the sleep-wake cycle. Specifically, it shows that a simple shift in the balance of chemicals found in the fluid that bathes ...

Turn left! How myosin-Va helps direct neuron growth

April 28, 2016

Researchers at the RIKEN Brain Science Institute in Japan have discovered a protein complex that helps direct the growth of axons—the parts of neurons that make up our nerves, connecting our senses and muscles to the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.