Study identifies gene tied to motor neuron loss in amyotrophic lateral sclerosis

January 23, 2014
MMP-9 controls onset of paralysis in ALS mice. Sections of muscle stained for nerve (green) and muscle (red); nerve-muscle contacts appear yellow. In the SOD1 mouse, muscles that move the eye (left) retain nerve contacts and are active. Fast leg muscles (center) in the same animal lose nerve contacts (red stain only) and become paralyzed. Fast muscles from which MMP-9 has been genetically removed (right) retain their nerve contacts, and therefore muscle function, for nearly 3 months longer. This suggests that inhibiting MMP-9 in human patients with ALS should be beneficial. Credit: The Henderson Lab/Columbia University Medical Center.

Columbia University Medical Center (CUMC) researchers have identified a gene, called matrix metalloproteinase-9 (MMP-9), that appears to play a major role in motor neuron degeneration in amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. The findings, made in mice, explain why most but not all motor neurons are affected by the disease and identify a potential therapeutic target for this still-incurable neurodegenerative disease. The study was published today in the online edition of the journal Neuron.

"One of the most striking aspects of ALS is that some —specifically, those that control eye movement and eliminative and sexual functions—remain relatively unimpaired in the disease," said study leader Christopher E. Henderson, PhD, the Gurewitsch and Vidda Foundation Professor of Rehabilitation and Regenerative Medicine, professor of pathology & cell biology and neuroscience (in neurology), and co-director of Columbia's Motor Neuron Center. "We thought that if we could find out why these neurons have a natural resistance to ALS, we might be able to exploit this property and develop new therapeutic options."

To understand why only some motor neurons are vulnerable to ALS, the researchers used DNA microarray profiling to compare the activity of tens of thousands of genes in neurons that resist ALS (oculomotor neurons/eye movement and Onuf's nuclei/continence) with neurons affected by ALS (lumbar 5 spinal neurons/leg movement). The neurons were taken from normal mice.

"We found a number of candidate 'susceptibility' genes—genes that were expressed only in vulnerable motor neurons. One of those genes, MMP-9, was strongly expressed into adulthood. That was significant, as ALS is an adult-onset disease," said co-lead author Krista J. Spiller, a former graduate student in Dr. Henderson's laboratory who is now a postdoctoral fellow at the University of Pennsylvania. The other co-lead author is Artem Kaplan, a former MD-PhD student in the lab who is now a neurology resident at NewYork-Presbyterian Hospital/Columbia University Medical Center.

In a follow-up experiment, the researchers confirmed that the product of MMP-9, MMP-9 protein, is present in ALS-vulnerable motor neurons, but not in ALS-resistant ones. Further, the researchers found that MMP-9 can be detected not just in lumbar 5 neurons, but also in other types of motor neurons affected by ALS. "It was a perfect correlation." said Dr. Henderson. "In other words, having MMP-9 is an absolute predictor that a motor neuron will die if the disease strikes, at least in mice."

Taking a closer look at the groups of vulnerable motor neurons, the researchers found differences in MMP-9 expression at the single-cell level. Fast-fatigable neurons (which are involved in movements like jumping and sprinting and are the first to die in ALS) were found to have the most MMP-9 protein, whereas slow neurons (which control posture and are only partially affected in ALS) had none. "So, MMP-9 is not only labeling the most vulnerable groups of motor neurons, it is labeling the most vulnerable subtypes within those groups, as well," said Dr. Spiller.

In another experiment, the researchers tested whether MMP-9 has a functional role in ALS by crossing MMP-9 knockout mice with SOD1 mutant mice (a standard mouse model of ALS). Progeny from this cross with no MMP-9 exhibited an 80-day delay in loss of fast-fatigable motor neuron function and a 25 percent longer lifespan, compared with littermates with two copies of the MMP-9 gene. "This effect on nerve-muscle synapses is the largest ever seen in a mouse model of ALS," said Dr. Spiller.

The same effect on motor neuron function was seen when MMP-9 was inactivated in SOD1 mutant mice using chemical injections or virally mediated gene therapy.

"Even after treatment, these mice didn't have a normal lifespan, so inactivating MMP-9 is not a cure," said Dr. Henderson. "But it's remarkable that lowering levels of a single gene could have such a strong effect on the disease. That's encouraging for therapeutic purposes."

The researchers are still investigating how MMP-9 affects motor neuron function. Their findings suggest that the protein plays a role in increasing stress on the endoplasmic reticulum, an organelle involved in transporting and processing materials within cells. "Our goal is to learn more about MMP-9 and related pathways and to identify a new set of therapeutic targets," said Dr. Henderson.

The paper is titled, "Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration." The other contributors are Christopher Towne (Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland), Kevin C. Kanning (CUMC), Ginn T. Choe (CUMC), Adam Geber (CUMC), Turgay Akay (CUMC), and Patrick Aebischer (Brain Mind Institute).

MMP-9 inhibitors developed for cancer have not been successful in that context. The authors hope that this study will encourage companies to explore clinical testing of such drugs—or other modes of MMP-9 inhibition—in patients with ALS.

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

Related Stories

Neon exposes hidden ALS cells

April 30, 2013

A small group of elusive neurons in the brain's cortex play a big role in ALS (amyotrophic lateral sclerosis), a swift and fatal neurodegenerative disease that paralyzes its victims. But the neurons have always been difficult ...

Model neurons have implications for ALS and other afflictions

December 12, 2013

NYU biologists have created model neurons with greater precision and efficiency than have been achieved in the past. Their breakthrough, which appeared this fall in a pair of papers in the journal Nature Neuroscience, has ...

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

Neuroscientists reveal how the brain can enhance connections

November 18, 2015

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.