Researchers discover how heart arrhythmia occurs

January 19, 2014
heart

Researchers have discovered the fundamental biology of calcium waves in relation to heart arrhythmias.

The findings published this month in the January 19 edition of Nature Medicine outlines the discovery of this fundamental physiological process that researchers hope will one day help design molecularly tailored medications that correct the pathophysiology.

Heart arrhythmias cause the heart to beat irregularly, resulting in symptoms such as dizziness and fainting, or in severe cases, sudden arrhythmic death. While many factors contribute to the development of arrhythmias, including genetics, scientists know that a common mechanism of is overload in the heart, i.e. calcium-triggered arrhythmias that can lead to sudden death. The underlying mechanism of these calcium-triggered arrhythmias has remained a mystery for decades.

Using a combination of molecular biology, electrophysiology, and genetically engineering mice, scientists at the University of Calgary's and Alberta Health Services' Libin Cardiovascular Institute of Alberta (Libin Institute)have discovered that a calcium-sensing-gate in the cardiac channel (ryanodine receptor) is responsible for initiation of and calcium-triggered arrhythmias.

Utilizing a genetically modified mouse model they were able to manipulate the sensor and completely prevented calcium-triggered arrhythmias.

"The calcium-sensing- gate mechanism discovered here is an entirely novel concept with potential to shift our general understanding of ion channel gating, cardiac arrhythmogenesis, and the treatment of calcium-triggered arrhythmias," says SR Wayne Chen, PhD, the study's senior author and University of Calgary- Libin Institute researcher. "These findings open a new chapter of calcium signaling and the discovery fosters the possibilities of new drug interventions."

Explore further: Genetic variant increases risk of heart rhythm dysfunction, sudden death

More information: The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias, DOI: 10.1038/nm.3440

Related Stories

Arrhythmia culprit caught in action

February 17, 2013

Using powerful X-rays, University of British Columbia researchers have reconstructed a crime scene too small for any microscope to observe – and caught the culprit of arrhythmia in action.

Cause of heart arrhythmia discovered using X-rays at CLS

February 22, 2013

Using powerful X-rays at the Canadian Light Source synchrotron, scientists have reconstructed the scenario of heart arrhythmia in action, making critical progress towards preventing deadly conditions and saving lives.

Recommended for you

Heart attack treatment hypothesis 'busted'

July 6, 2015

Researchers have long had reason to hope that blocking the flow of calcium into the mitochondria of heart and brain cells could be one way to prevent damage caused by heart attacks and strokes. But in a study of mice engineered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.