Research sheds new light on heritability of disease

A group of international researchers, led by a research fellow in the Harvard Medical School-affiliated Institute for Aging Research at Hebrew SeniorLife, published a paper today in Cell describing a study aimed at better understanding how inherited genetic differences, or variants, predispose certain individuals to develop diseases such as type 2 diabetes. The study integrated computational methodology with experimentation to address and prove underlying genetic causes of type 2 diabetes. In principle, the new methodology can be applied to any common disease, including osteoporosis, Alzheimer's disease and cancer. The hope is that with better understanding of how DNA functions in these individuals, new treatments will follow.

Since completion of the Human Genome Project in 2003, researchers have been working to discover how genes contribute to disease. The question remains why some individuals are more at risk than others to develop certain diseases when factors such as age, gender and life-style are equal.

A small percentage of DNA contain the coded sequence that produces proteins necessary for cell growth and function. However DNA that lies outside of these coding regions play an essential role in turning genes on and off. By understanding how these work in concert with one another, we may identify targets for future therapies.

The method developed and tested by this study tracks patterns within regulatory regions in a number of species close or distant to humans. If a pattern of variants in these non-coding regions is present in many species, it is likely to serve a very important function.

According to study co-author and Institute Fellow, Melina Claussnitzer, Ph.D., "It has become clear that the bulk of disease associated variants are located in the non-coding part of the DNA, where the function of the DNA is largely unknown. Non-coding variants are known to contribute to disease through dysregulation of . But pinpointing the non-coding variants, which confer this dysregulation remains a major challenge."

The authors applied the analysis to genetic variants associated with , one of the most prevalent human diseases. The integration of their computational approach together with several experimental approaches (thereby addressing and proving causality) identified a 2 diabetes variant that promotes disease by interfering with gene regulation and altering fat cell function.

Instead of only considering the conservation of DNA sequences across species, the researchers' computational methodology finds conserved patterns of certain sequences that make up transcription factor binding sites (TFBS) where proteins bind to regulate gene expression. To find these conserved TFBS patterns, the computer uses data about a given region around a gene variant in the human genome, and searches for comparable regions in other vertebrate species. The TFBS pattern conservation of the regions is then scored based on the similarity of TFBS arrangement across species. A high score indicates a high probability that this variant affects the regulation of genes, thereby pointing to the underlying mechanism of a disease.

Related Stories

Why is type 2 diabetes an increasing problem?

Jan 09, 2014

Contrary to a common belief, researchers have shown that genetic regions associated with increased risk of type 2 diabetes were unlikely to have been beneficial to people at stages through human evolution.

Methylation linked to metabolic disease

Nov 11, 2013

(Medical Xpress)—In the first in-depth analysis of DNA methylation in fat, a process that affects the regulation of genes, researchers have linked regions of methylation to metabolic traits such as high ...

Protein coding 'junk genes' may be linked to cancer

Nov 17, 2013

By using a new analysis method, researchers at Karolinska Institutet and Science for Life Laboratory (SciLifeLab) in Sweden have found close to one hundred novel human gene regions that code for proteins. A number of these ...

Recommended for you

Science of romantic relationships includes gene factor

12 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.