Impaired cell division leads to neuronal disorder

Impaired cell division leads to neuronal disorder
Normal separation of chromosomes (blue) with two centrosomes (red) in a bipolar spindel apparatus (green).

Prof. Erich Nigg and his research group at the Biozentrum of the University of Basel have discovered an amino acid signal essential for error-free cell division. This signal regulates the number of centrosomes in the cell, and its absence results in the development of pathologically altered cells. Remarkably, such altered cells are found in people with a neurodevelopmental disorder, called autosomal recessive primary microcephaly. The results of these investigations have been published in the current issue of the US journal Current Biology.

Cell division is the basis of all life. Of central importance is the error-free segregation of genetic material, the chromosomes. A flawless division process is a prerequisite for the development of healthy, new , whilst errors in can cause illnesses such as cancer. The centrosome, a tiny cell organelle, plays a decisive role in this process.

Prof. Erich Nigg's research group at the Biozentrum of the University of Basel has investigated an important step in cell division: the duplication of the centrosome and its role in the correct segregation of the chromosomes into two daughter cells. The STIL has an essential function in this process. It ensures that centrosome duplicate before one half of the genetic material is transported into each of the two daughter cells.

KEN-Box important for protein breakdown

During cell division, the protein STIL is degraded. If this does not occur, the protein accumulates in the cell, which then causes an overproduction of centrosomes. As a consequence, mis-segregated chromosomes are incorporated into the , which then represent cells with faulty . The scientists discovered an amino acid signal on the STIL protein, a so-called KEN-Box, and showed that this is critical for the breakdown of the protein: "The Ken-Box is the signal that orders the protein degradation machinery to break down the STIL protein," explains Christian Arquint, the first author of this publication. In the absence of the KEN-Box, the protein is not degraded.

Impaired cell division leads to neuronal disorder
Flawed separation of chromosomes (blue) with several centrosomes (red) in a multipolar spindel apparatus (green).

Absence of the KEN-Box causes microcephaly

In some patients with microcephaly, a neuronal disorder that leads to a reduced number of nerve cells being produced and, therefore, a smaller brain, the KEN-box is lacking from the STIL protein. The scientists were thus able to demonstrate a tantalizing connection between the absence of this particular amino acid signal and an illness. "When during our investigations of cell division and centrosome duplication we came across a connection to the disorder microcephaly, we were particularly pleased, as this helps us to better understand how this disorder develops," says Christian Arquint.

This video is not supported by your browser at this time.

In the future, the research group led by Erich Nigg plans to uncover other connections between errors of cell division and the illness microcephaly. They also want to focus on the investigation of other proteins that play important roles in the process of cell division, in particular those involved in centrosome duplication.

More information: Christian Arquint and Erich A. Nigg. "STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification." Current Biology, 30 January 2014. DOI: 10.1016/j.cub.2013.12.016

add to favorites email to friend print save as pdf

Related Stories

What makes cell division accurate?

Jan 23, 2014

As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during which duplicate copies of the cell's DNA-containing chromosomes are pulled apart and ...

EGF growth factor accelerates cell division, study finds

May 14, 2013

Biologists at Heidelberg University have discovered new approaches for the treatment of cancer. They investigated how a special signalling molecule, the epidermal growth factor (EGF), stimulates the separation of chromosomes ...

Recommended for you

Team finds key to tuberculosis resistance

34 minutes ago

The cascade of events leading to bacterial infection and the immune response is mostly understood. However, the molecular mechanisms underlying the immune response to the bacteria that causes tuberculosis ...

Mutation may cause early loss of sperm supply

1 hour ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

3 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

8 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.