How invariant natural killers keep tuberculosis in check

This shows macrophages infected with Mycobacterium tuberculosis. Credit: Alissa Rothchild

Mycobacterium tuberculosis is a major cause of death worldwide, and a formidable foe. Most healthy people can defend themselves against tuberculosis, but they need all parts of their immune system to work together. A study published on January 2nd in PLOS Pathogens reveals how a special class of immune cells called "invariant natural killer T cells" make their contribution to this concerted effort.

"We were interested in identifying the mechanisms that different types of T use to control Mycobacterium tuberculosis infection", says Samuel Behar, from the University of Massachusetts Medical School, US, the senior author of the new study.

He and his colleagues had previously shown that when invariant natural killer T (iNKT) cells encounter infected macrophages—the human target cells of Mycobacterium tuberculosis, or Mtb—the iNKT cells somehow prevented Mtb from growing and multiplying inside the macrophages.

In this study, the scientists focused on how the iNKT cells achieved this. Using a number of cell culture systems and experiments in mice to dissect the interaction, they found that when iNKT cells are confronted with Mtb-infected macrophages, they respond in two different ways. One is that they produce and release , a broad-spectrum immune system activator. But when the scientists blocked interferon gamma action, they found that the iNKT cells could still inhibit Mtb growth in the macrophages.

After testing a few more known mediators of iNKT cell function and finding that they were dispensable as well, the scientists discovered that Mtb control depends on production and release by the iNKT cells of a soluble immune system factor called GM-CSF. When they blocked GM-CSF, they found that iNKT cells could no longer restrict mycobacterial growth. And when they exposed isolated Mtb-infected macrophages to GM-CSF, it turned out that this factor alone was sufficient to inhibit Mtb growth.

These results are exciting in the context of previous findings that mice in which the GM-CSF gene had been deleted were more susceptible to Mtb infection, because they link iNKT cells and GM-CSF and identify a novel pathway of Mtb control by the .

Overall, the scientists say "Understanding how iNKT cells contribute to the control and elimination of Mtb in general and finding that GM-CSF has an essential function could lead to novel therapeutic approaches that strengthen their activity and boost the overall immune response during infection".

More information: PLoS Pathog 10(1):e1003805. DOI: 10.1371/journal.ppat.1003805

Related Stories

Boosting immune responses against leukaemia

Nov 21, 2012

(Medical Xpress)—In the first of its kind, a translational study undertaken at the Malaghan Institute of Medical Research has revealed that boosting the activity of a rare type of immune cell could be an ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments