Leukemia: Mode of action of a targeted treatment clarified

January 15, 2014
Leukemia: mode of action of a targeted treatment clarified
The blue represents DNA in the nucleus; the red is nuclear corpus PML. These one are reorganized by the treatment targeting PML/RARA. Credit: © by Prof Hugues de Thé

The mechanism of senescence – or premature cell ageing – can have an anticancer effect. This new work, conducted by Hugues de Thé and his team (Paris Diderot University/ Inserm/ CNRS/ AP-HP), was published in Nature Medicine on January 12, 2014. It reveals that targeted treatments for acute promyelocytic leukaemia, a rare form of blood cancer, cause a cascade of molecular events leading to cellular senescence and recovery. This action model could be activated in other types of cancers.

The PML/RARA protein causes the proliferation of in patients affected by acute promyelocytic leukaemia. Existing targeted treatments combining a hormone – – and a poison – arsenic – result in permanent recovery for the majority of patients, without us having a precise understanding of their action on cancer cells. Previous work by Prof Hugues de Thé's team has shown that the combination of arsenic and retinoic acid causes destruction of the PML/RARA protein and the elimination of leukaemic stem cells. It remained to understand the link between these two events.

This new research contributes the factors needed to understand the recovery. It demonstrates the unexpected involvement of a cascade of events leading to senescence. The aim of the treatment is to reach this final ageing stage of the cells in order to render them incapable of multiplying.

During this targeted treatment researchers showed that the , arbiter between cell death and survival, triggers senescence through the involvement of PML nuclear bodies. These spherical structures are present in normal cells but are disorganised by PML/RARA in leukaemia. The treatment reorganises them (see figure below), activating p53 and triggering senescence. In this cascade of events (treatment, PML/RARA degradation, reformation of nuclear bodies, p53 activation), only one link has to be missing to block all the therapeutic effects.

It is this phenomenon that enables the elimination of diseased and leads to total recovery of the patient, using only combined retinoic acid/arsenic . The absence of chemotherapy avoids many severe side effects.

This understanding of the cellular and molecular mechanism of recovery from acute promyelocytic leukaemia opens prospects for activating this same PML/p53 pathway in other types of cancers.

Explore further: Scientists discover mechanism of resistance to vital leukaemia treatment, opening door to new therapies

Related Stories

Tipping the balance between senescence and proliferation

November 15, 2013

An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Recommended for you

Genetic sequencing reveals drug resistance growth

May 25, 2016

The rate at which genetically mutated cancer cells grow may help explain why patients with a common form of leukemia develop treatment resistance, according to new research led by a Weill Cornell Medicine investigator. The ...

Taking control of key protein stifles cancer spread in mice

May 20, 2016

For cancer to spread, the cells that take off into the bloodstream must find a tissue that will permit them to thrive. They don't just go looking, though. Instead, they actively prepare the tissue, in one case by co-opting ...

Cancer can be combated with reprogrammed macrophage cells

May 20, 2016

Researchers at Karolinska Institutet have generated antibodies that reprogramme a type of macrophage cell in the tumour, making the immune system better able to recognise and kill tumour cells. The study, which is published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.